Effective refinements of classical theorems in descriptive set theory

Vassilis Gregoriades (ongoing work with Y.N. Moschovakis)

TU Darmstadt

8th of July 2013, Nancy France

Recursive Polish spaces

A **Polish space** is a topological space which is separable and metrizable by a complete distance function.

For the remaining of this talk we fix a recursive enumeration $(q_k)_{k\in\omega}$ of the set of all rational numbers.

Recursive Polish spaces

A **Polish space** is a topological space which is separable and metrizable by a complete distance function.

For the remaining of this talk we fix a recursive enumeration $(q_k)_{k\in\omega}$ of the set of all rational numbers.

Definition

Suppose that (\mathcal{X}, d) is a separable complete metric space. A **recursive presentation** of (\mathcal{X}, d) is a function $\mathbf{r} : \omega \to \mathcal{X}$ such that

• the set $\{\mathbf{r}_n \mid n \in \omega\}$ is dense in \mathcal{X} ,

Recursive Polish spaces

A **Polish space** is a topological space which is separable and metrizable by a complete distance function.

For the remaining of this talk we fix a recursive enumeration $(q_k)_{k\in\omega}$ of the set of all rational numbers.

Definition

Suppose that (\mathcal{X}, d) is a separable complete metric space. A **recursive presentation** of (\mathcal{X}, d) is a function $\mathbf{r} : \omega \to \mathcal{X}$ such that

- the set $\{\mathbf{r}_n \mid n \in \omega\}$ is dense in \mathcal{X} ,
- 2 the relations $P_{<}, P_{\le} \subseteq \omega^3$ defined by

$$P_{<}(i,j,s) \iff d(\mathbf{r}_i,\mathbf{r}_j) < q_s$$

$$P_{\leq}(i,j,s) \iff d(\mathbf{r}_i,\mathbf{r}_j) \leq q_s$$

are recursive.

Definition (continued)

A separable complete metric space (\mathcal{X}, d) is **recursively presented** if it admits a recursive presentation.

Definition (continued)

A separable complete metric space (\mathcal{X}, d) is **recursively presented** if it admits a recursive presentation.

A Polish space \mathcal{X} is a **recursive Polish space** if there exists a pair (d, \mathbf{r}) as above.

Definition (continued)

A separable complete metric space (\mathcal{X}, d) is **recursively presented** if it admits a recursive presentation.

A Polish space \mathcal{X} is a **recursive Polish space** if there exists a pair (d, \mathbf{r}) as above.

We encode the set of all finite sequences of naturals by a natural in a recursive way and we denote the corresponding set by ${\rm Seq}$.

Two classical results

Two classical results

Theorem (Well-known)

• Every Polish space is the continuous image of the Baire space $\mathcal{N}=\omega^\omega$ though an open mapping.

Two classical results

Theorem (Well-known)

- Every Polish space is the continuous image of the Baire space $\mathcal{N}=\omega^{\omega}$ though an open mapping.
- 2 Every zero-dimensional Polish space is homeomorphic to a closed subset of \mathcal{N} .

Suslin schemes

Definition

A **Suslin scheme** on a Polish space \mathcal{X} is a family $(A_s)_{s \in \text{Seq}}$ of subsets of \mathcal{X} indexed by Seq.

We say that $(A_s)_{s \in Seq}$ is of **vanishing diameter** if for all $\alpha \in \mathcal{N}$ we have that

$$\lim_{n\to\infty} \operatorname{diam}(A_{\overline{\alpha}(n)}) = 0,$$

for some compatible distance function d, where $\overline{\alpha}(n)$ is the code of the finite sequence $(\alpha(0), \ldots, \alpha(n-1))$.

Suslin schemes

Definition

A **Suslin scheme** on a Polish space \mathcal{X} is a family $(A_s)_{s \in \text{Seq}}$ of subsets of \mathcal{X} indexed by Seq.

We say that $(A_s)_{s\in \operatorname{Seq}}$ is of **vanishing diameter** if for all $\alpha\in\mathcal{N}$ we have that

$$\lim_{n\to\infty} \operatorname{diam}(A_{\overline{\alpha}(n)}) = 0,$$

for some compatible distance function d, where $\overline{\alpha}(n)$ is the code of the finite sequence $(\alpha(0), \ldots, \alpha(n-1))$.

For every Suslin scheme $(A_s)_{s\in Seq}$ on a Polish space $\mathcal X$ of vanishing diameter we assign the set

$$D = \{ \alpha \in \mathcal{N} \mid \cap_{n \in \omega} A_{\overline{\alpha}(n)} \neq \emptyset \}.$$

Since the Suslin scheme is of vanishing diameter the intersection $\cap_{n\in\omega}A_{\overline{\alpha}(n)}$ is at most a singleton.

V.G. (TU Darmstadt) Effective Refinements 5/15

We define the partial function $f: \mathcal{N} \rightharpoonup \mathcal{X}$ by

$$f(\alpha) \downarrow \iff \alpha \in D$$

 $f(\alpha) \downarrow \implies f(\alpha) = \text{the unique } x \in \cap_{n \in \omega} A_{\overline{\alpha}(n)}.$

The preceding function f is the **associated map** of the Suslin scheme $(A_s)_{s \in \text{Seq}}$.

We define the partial function $f : \mathcal{N} \rightharpoonup \mathcal{X}$ by

$$f(\alpha) \downarrow \iff \alpha \in D$$

 $f(\alpha) \downarrow \implies f(\alpha) = \text{the unique } x \in \cap_{n \in \omega} A_{\overline{\alpha}(n)}.$

The preceding function f is the **associated map** of the Suslin scheme $(A_s)_{s \in Seq}$.

Definition

A Suslin scheme $(A_s)_{s \in \text{Seq}}$ is **semirecursive** (**recursive**) if the set $A \subseteq \text{Seq} \times \mathcal{X}$ defined by $A(s,x) \iff x \in A_s$, (so that the *s*-section of *A* is exactly the set A_s) is **semirecursive** (**recursive**).

We define the partial function $f : \mathcal{N} \rightharpoonup \mathcal{X}$ by

$$f(\alpha) \downarrow \iff \alpha \in D$$

 $f(\alpha) \downarrow \implies f(\alpha) = \text{the unique } x \in \cap_{n \in \omega} A_{\overline{\alpha}(n)}.$

The preceding function f is the **associated map** of the Suslin scheme $(A_s)_{s \in Seq}$.

Definition

A Suslin scheme $(A_s)_{s \in \operatorname{Seq}}$ is **semirecursive** (**recursive**) if the set $A \subseteq \operatorname{Seq} \times \mathcal{X}$ defined by $A(s,x) \iff x \in A_s$, (so that the *s*-section of *A* is exactly the set A_s) is **semirecursive** (**recursive**).

We notice that semirecursive Suslin schemes consist of open sets and that recursive Suslin schemes consist of clopen sets.

Lusin schemes

Definition

A **Lusin scheme** on a Polish space \mathcal{X} is a Suslin scheme $(A_s)_{s \in Seq}$ with the properties

- $lackbox{1} A_{s^{\hat{}}i} \cap A_{s^{\hat{}}j} = \emptyset \text{ for all } s \in \operatorname{Seq} \text{ and } i \neq j, \text{ and } s \in \operatorname{Seq} \text{ and } s \neq j, \text{ a$
- $A_{s^{\hat{}}i} \subseteq A_s$ for all $s \in \text{Seq}$ and $i \in \omega$.

The notions of "vanishing diameter", "associated map" and "being semirecursive/recursive" apply also to Lusin schemes in the obvious way.

Suppose that $(A_s)_{s \in \mathrm{Seq}}$ is a Suslin scheme on a Polish space $\mathcal X$ of vanishing diameter.

Suppose that $(A_s)_{s\in \mathrm{Seq}}$ is a Suslin scheme on a Polish space $\mathcal X$ of vanishing diameter. Then

① the associated map $f: D \to \mathcal{X}$ is continuous,

Suppose that $(A_s)_{s\in \mathrm{Seq}}$ is a Suslin scheme on a Polish space $\mathcal X$ of vanishing diameter. Then

- **①** the associated map $f: D \to \mathcal{X}$ is continuous,
- ② if every A_s is open and $A_s \subseteq \bigcup_i A_{s^{\hat{i}}}$ then f is open,

Suppose that $(A_s)_{s\in \operatorname{Seq}}$ is a Suslin scheme on a Polish space $\mathcal X$ of vanishing diameter. Then

- **①** the associated map $f: D \to \mathcal{X}$ is continuous,
- ② if every A_s is open and $A_s \subseteq \bigcup_i A_{s^{\hat{i}}}$ then f is open,
- ③ if $(A_s)_{s \in \text{Seq}}$ is a Lusin scheme and every A_s is open then f is a homeomorphism between D and f[D],

Suppose that $(A_s)_{s\in \operatorname{Seq}}$ is a Suslin scheme on a Polish space $\mathcal X$ of vanishing diameter. Then

- **①** the associated map $f: D \to \mathcal{X}$ is continuous,
- ② if every A_s is open and $A_s \subseteq \cup_i A_{s^{\hat{i}}}$ then f is open,
- ③ if $(A_s)_{s \in \text{Seq}}$ is a Lusin scheme and every A_s is open then f is a homeomorphism between D and f[D],
- 4 if $(A_s)_{s \in \text{Seq}}$ is a Lusin scheme and every A_s is closed then D is closed as well.

Suppose that \mathcal{X} is recursive Polish space and that $(A_s)_{s\in \operatorname{Seq}}$ is a semirecusive Suslin scheme with associated map the function f and $\operatorname{diam}(A_s) < 2^{-lh(s)}$ for all $s \in \operatorname{Seq}$ for some compatible pair (d, \mathbf{r}) . Then the partial function

$$f: \mathcal{N} \rightharpoonup \mathcal{X}$$

is recursive on its domain.

Suppose that \mathcal{X} is recursive Polish space and that $(A_s)_{s\in \operatorname{Seq}}$ is a semirecusive Suslin scheme with associated map the function f and $\operatorname{diam}(A_s) < 2^{-lh(s)}$ for all $s \in \operatorname{Seq}$ for some compatible pair (d, \mathbf{r}) . Then the partial function

$$f: \mathcal{N} \rightharpoonup \mathcal{X}$$

is recursive on its domain.

If moreover the family $(A_s)_{s \in Seq}$ is a Lusin scheme then the inverse partial function

$$f^{-1}: \mathcal{X} \rightharpoonup \mathcal{N}$$

is recursive on its domain as well.

For every recursive Polish space $\mathcal X$ and every compatible pair $(d,\mathbf r)$ there exists a semirecursive Suslin scheme $(A_s)_{s\in \operatorname{Seq}}$ with the following properties.

- Every A_s is non-empty,
- ② diam (A_s) < $2^{-lh(s)}$ for all $s \in Seq$,

For every recursive Polish space \mathcal{X} and every compatible pair (d, \mathbf{r}) there exists a semirecursive Suslin scheme $(A_s)_{s \in \text{Seq}}$ with the following properties.

- Every A_s is non-empty,
- ② diam(A_s) < $2^{-lh(s)}$ for all $s \in Seq$,
- $A_{s} = \cup_{i \in \omega} A_{s^{\hat{}}i} = \cup_{i \in \omega} \overline{A}_{s^{\hat{}}i}.$

Basic tool for the proof.

There exists a recursive set $I \subseteq \omega^5$ such that for all $(n, i, k) \in \omega^3$ we have

$$B(\mathbf{r}_i, q_k) = \bigcup_{(j,m) \in I_{(n,i,k)}} B(\mathbf{r}_j, q_m) = \bigcup_{(j,m) \in I_{(n,i,k)}} \overline{B(\mathbf{r}_j, q_m)}$$

and $\operatorname{diam} B(\mathbf{r}_j, q_m) \leq 2^{-n+1}$ for all $(j, m) \in I_{(n,i,k)}$.

10 / 15

V.G. (TU Darmstadt) Effective Refinements

For every recursive Polish space $\mathcal X$ there exists a recursive surjection

$$\pi: \mathcal{N} \twoheadrightarrow \mathcal{X}$$

which is also an open mapping.

For every recursive Polish space $\mathcal X$ there exists a recursive surjection

$$\pi: \mathcal{N} \to \mathcal{X}$$

which is also an open mapping.

Sketch of the proof.

We consider the semirecursive Suslin scheme $(A_s)_{s \in Seq}$ of the preceding Lemma.

For every recursive Polish space $\mathcal X$ there exists a recursive surjection

$$\pi: \mathcal{N} \twoheadrightarrow \mathcal{X}$$

which is also an open mapping.

Sketch of the proof.

We consider the semirecursive Suslin scheme $(A_s)_{s \in \text{Seq}}$ of the preceding Lemma. The associated map f is a total, surjective and recursive.

For every recursive Polish space $\mathcal X$ there exists a recursive surjection

$$\pi: \mathcal{N} \to \mathcal{X}$$

which is also an open mapping.

Sketch of the proof.

We consider the semirecursive Suslin scheme $(A_s)_{s \in \operatorname{Seq}}$ of the preceding Lemma. The associated map f is a total, surjective and recursive. Moreover since every A_s is open and $A_s \subseteq \cup_i A_{s^{\hat{}}i}$ for all s, i it follows that f is open.

A recursive Polish space $\mathcal X$ is **recursively zero-dimensional** if there exists a compatible pair $(d,\mathbf r)$ such that the relation $I\subseteq \mathcal X\times\omega\times\omega$ defined by

$$I(x,i,s) \iff d(x,\mathbf{r}_i) < q_s$$

is recursive.

A recursive Polish space $\mathcal X$ is **recursively zero-dimensional** if there exists a compatible pair $(d, \mathbf r)$ such that the relation $I \subseteq \mathcal X \times \omega \times \omega$ defined by

$$I(x,i,s) \iff d(x,\mathbf{r}_i) < q_s$$

is recursive.

Lemma

For every recursively zero-dimensional Polish space \mathcal{X} and every compatible pair (d, \mathbf{r}) for \mathcal{X} there exists a recursive Lusin scheme $(A_s)_{s \in \text{Seq}}$ with the following properties.

- $A_s = \bigcup_i A_{s^*i}$ and
- 3 diam(A_s) < $2^{-lh(s)}$

for all $s \in \text{Seq}$ and all $i \in \omega$.

4 D > 4 P > 4 E > 4 E > E 9 Q Q

For every recursively zero-dimensional Polish space $\mathcal X$ there exists a recursive injection $g:\mathcal X\rightarrowtail\mathcal N$ such that the set $g[\mathcal X]$ is $\Pi^0_1(\varepsilon)$ for some $\varepsilon\in\Delta^0_2$.

Moreover the inverse function $g^{-1}: g[\mathcal{X}] \rightarrowtail \mathcal{X}$ is computed by a semirecursive subset of $\mathcal{N} \times \omega^2$ on \mathcal{Y} . In particular the inverse function g^{-1} is continuous.

For every recursively zero-dimensional Polish space $\mathcal X$ there exists a recursive injection $g: \mathcal X \rightarrowtail \mathcal N$ such that the set $g[\mathcal X]$ is $\Pi^0_1(\varepsilon)$ for some $\varepsilon \in \Delta^0_2$.

Moreover the inverse function $g^{-1}: g[\mathcal{X}] \rightarrowtail \mathcal{X}$ is computed by a semirecursive subset of $\mathcal{N} \times \omega^2$ on \mathcal{Y} . In particular the inverse function g^{-1} is continuous.

Sketch of the proof.

We consider the recursive Lusin scheme $(A_s)_{s \in \text{Seq}}$ of the preceding Lemma and its associated map $f : D \to \mathcal{X}$.

For every recursively zero-dimensional Polish space $\mathcal X$ there exists a recursive injection $g:\mathcal X\rightarrowtail\mathcal N$ such that the set $g[\mathcal X]$ is $\Pi^0_1(\varepsilon)$ for some $\varepsilon\in\Delta^0_2$.

Moreover the inverse function $g^{-1}: g[\mathcal{X}] \rightarrowtail \mathcal{X}$ is computed by a semirecursive subset of $\mathcal{N} \times \omega^2$ on \mathcal{Y} . In particular the inverse function g^{-1} is continuous.

Sketch of the proof.

We consider the recursive Lusin scheme $(A_s)_{s \in \operatorname{Seq}}$ of the preceding Lemma and its associated map $f: D \to \mathcal{X}$. Then f is continuous and bijective.

For every recursively zero-dimensional Polish space $\mathcal X$ there exists a recursive injection $g:\mathcal X\rightarrowtail\mathcal N$ such that the set $g[\mathcal X]$ is $\Pi^0_1(\varepsilon)$ for some $\varepsilon\in\Delta^0_2$.

Moreover the inverse function $g^{-1}: g[\mathcal{X}] \rightarrowtail \mathcal{X}$ is computed by a semirecursive subset of $\mathcal{N} \times \omega^2$ on \mathcal{Y} . In particular the inverse function g^{-1} is continuous.

Sketch of the proof.

We consider the recursive Lusin scheme $(A_s)_{s\in \operatorname{Seq}}$ of the preceding Lemma and its associated map $f:D\to\mathcal{X}$. Then f is continuous and bijective. We take $g=f^{-1}:\mathcal{X}\rightarrowtail D$.

For every recursively zero-dimensional Polish space $\mathcal X$ there exists a recursive injection $g:\mathcal X\rightarrowtail\mathcal N$ such that the set $g[\mathcal X]$ is $\Pi^0_1(\varepsilon)$ for some $\varepsilon\in\Delta^0_2$.

Moreover the inverse function $g^{-1}: g[\mathcal{X}] \rightarrowtail \mathcal{X}$ is computed by a semirecursive subset of $\mathcal{N} \times \omega^2$ on \mathcal{Y} . In particular the inverse function g^{-1} is continuous.

Sketch of the proof.

We consider the recursive Lusin scheme $(A_s)_{s\in \operatorname{Seq}}$ of the preceding Lemma and its associated map $f:D\to \mathcal{X}$. Then f is continuous and bijective. We take $g=f^{-1}:\mathcal{X}\rightarrowtail D$. The set D is closed (see preceding slides) and in fact it is $\Pi^0_1(\varepsilon)$ for some $\varepsilon\in\Delta^0_2$.

It holds that g[X] = D and

$$\alpha \in D \iff (\forall n)[A_{\overline{\alpha}(n)} \neq \emptyset].$$

We define $\varepsilon(s) = 1$ exactly when there exists i such that $\mathbf{r}_i \in A_s$ and 0 otherwise, so that

$$\alpha \in g[\mathcal{X}] \iff (\forall n)[\varepsilon(\overline{\alpha}(n)) = 1].$$

It holds that g[X] = D and

$$\alpha \in D \iff (\forall n)[A_{\overline{\alpha}(n)} \neq \emptyset].$$

We define $\varepsilon(s) = 1$ exactly when there exists i such that $\mathbf{r}_i \in A_s$ and 0 otherwise, so that

$$\alpha \in g[\mathcal{X}] \iff (\forall n)[\varepsilon(\overline{\alpha}(n)) = 1].$$

The preceding constructions of Suslin and Lusin schemes make substantial use of

Theorem (Kleene's Recursion Theorem)

It holds that g[X] = D and

$$\alpha \in D \iff (\forall n)[A_{\overline{\alpha}(n)} \neq \emptyset].$$

We define $\varepsilon(s) = 1$ exactly when there exists i such that $\mathbf{r}_i \in A_s$ and 0 otherwise, so that

$$\alpha \in g[\mathcal{X}] \iff (\forall n)[\varepsilon(\overline{\alpha}(n)) = 1].$$

The preceding constructions of Suslin and Lusin schemes make substantial use of

Theorem (Kleene's Recursion Theorem)

For every partial function $f:\omega\rightharpoonup\omega$, which is recursive on its domain, there exists some e^* such that for all $n\in \mathsf{Domain}(f)$

$$\{e^*\}(n) \downarrow \text{ and } f(n) = \{e^*\}(n).$$

Thank you for your attention!