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Computable metric spaces

Definition
A triple (X , d , α) is a computable metric space if (X , d) is a
metric space and α : N→ X is a sequence with a dense image in
X such that the function N2 → R

(i , j) 7→ d(αi , αj)

is computable.

The points α0, α1, . . . are rational points or special points.



Computable metric spaces

Definition
A point x ∈ X is computable in (X , d , α) if there exists a
computable function f : N→ N such that

d(αf (i), x) < 2−i

for all i ∈ N.



Effective enumerations

I A set I is a rational ball if I = B(λ, ρ) where λ is a rational
point and ρ ∈ Q+.

I We denote by (Ik) and (Îk) some fixed effective enumerations
of open and closed rational balls respectively.



Co-c.e. sets

Definition
Let (X , d , α) be a computable metric space. A closed subset
S ⊆ X is a co-computably enumerable set if there exists a
computable function f : N→ N such that

X \ S =
⋃
i∈N

If (i)



Computable sets

Definition
Let (X , d , α) be a computable metric space. A set S ⊆ X is
computable if

1. S is co-c.e.;

2. S is computably enumerable i.e. the set

{i ∈ N : S ∩ Ii 6= ∅}

is computably enumerable.



Computable sets

I If S is computable then it is clearly co-c.e.

I On the other hand if S is co-c.e., S doesn’t have to be
computable.

Example

There exists a a co-c.e. line segment [0, a] with uncomputable a.
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Question

I Let (X , d , α) be a computable metric space. Let S ⊆ X .

I Which topological conditions we have to impose on S so that
the implication

S co-c.e =⇒ S computable

holds ?

I First we set our ambient space!



Nice computable metric spaces

Definition
A computable metric space (X , d , α) is nice if it has the effective
covering property and compact closed balls.



Nice computable metric spaces

Remark
In any nice computable metric space (X , d , α) we can effectively
enumerate all rational open sets which cover a given compact
co-c.e. set S.

I We observe only nice computable metric spaces.

I What can we say about conditions under which a co-c.e. set
S is computable in such an ambient space?
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Nice computable metric spaces

Remark
For compact co-c.e. sets the effective appoximation by a rational
set implies computability!



Nice computable metric spaces

Remark
For compact co-c.e. sets the effective appoximation by a rational
set implies computability!



Nice computable metric spaces

Problem
If a rational set J = B1 ∪ · · · ∪ Bk covers S we cannot effectively
determine which Bi intersect S.



Chains

Definition

1. A finite sequence C = (C0, . . . ,Cm) of open sets in X is a
chain if

|i − j | > 1 =⇒ Ci ∩ Cj = ∅

for all i , j ∈ {0, . . . ,m}. Each Ci is called a link.

2. For ε > 0 a finite sequence C0, . . . ,Cm is an ε-chain if
diametar of each Ci is less than ε.



Arcs

Definition
A metric space A is an arc if A is homeomorphic to the segment
[0, 1].

Remark
Every arc is a compact set.
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Arcs

Lemma
Let (X , d , α) be a nice computable metric space. Let ε > 0. Let S
be an arc in X . Then there exists an ε-chain which covers S.
Furthermore, we can effectively find an ε-chain with rational links
which covers S.



Arcs

Problem
We have ”unnecessary” links which can not be effectively detected!



Arcs with computable endpoints

Remark
We can effectively enumerate all chains which start and end at the
endpoints!



Arcs with computable endpoints

Remark
Each link of such a chain must intersect the arc!



Arcs with computable endpoints

Suppose there’s a link that does not intersect the arc.



Arcs with computable endpoints

Contradiction!



Topological rays

I A metric space R is a topological ray if R is homeomorphic
to the interval [0,∞〉.

I If R is a topological ray and f : [0,∞〉 → R a
homeomorphism. Then the point f (0) is called the endpoint
of R.

Remark
Being an endpoint doesn’t depend on the choice of f .



Topological rays

I If we have a closed set which is a topological ray then ”it’s
tail converges to infinity”.

I If we drop the condition that R is closed then this is not true!
(for example set R=[0, 1〉))



Closed topological rays (”tail converges to infinity”)
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Closed topological rays (”tail converges to infinity”)



Problems

I A topological ray is not compact!

I We do not have two computable endpoints!

Nevertheless, we proved the following theorem.
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Problems

I A topological ray is not compact!

I We do not have two computable endpoints!

Nevertheless, we proved the following theorem.



Computability of co-c.e. topological rays

Theorem
Let (X , d , α) be a nice computable metric space. Let R ⊆ X be a
co-c.e. topological ray with a computable endpoint. Then R is
computable.



Proof(sketch)
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Proof(sketch)



Topological lines

1. A topological line is a metric space homeomorphic to R.

2. If L is a closed set homeomorphic to a topological line then
”both of it’s tails converge to infinity”.



Problems

I A topological line is not compact!

I We again do not have two computable endpoints!

Nevertheless, we proved the following theorem.
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Problems

I A topological line is not compact!

I We again do not have two computable endpoints!

Nevertheless, we proved the following theorem.



Computability of co-c.e. topological lines

Theorem
Let (X , d , α) be a nice computable metric space. Let L be a
co-c.e. set such that L is a topological line. Then L is computable.



Proof(sketch)

Idea
Let L be a closed topological line. Let f : R→ L be a
homeomorphism.

1. For each r ∈ R the sets f (〈∞, r ]) and f ([r ,∞〉) are
topological rays.

2. If we find a computable r ∈ R such that f (r) is computable
and for which these sets are both co-c.e. we can apply the
previous theorem.

Problem
Such r might not exist!
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1-manifolds

Definition

I A 1-manifold with boundary is a second countable
Hausdorff topological space X in which each point has a
neighborhood homeomorphic to [0,∞〉.

I A boundary ∂X of X is the set of points x ∈ X for which
every homeomorphism between a neighbourhood of x and
[0,∞〉 maps x to 0.

I If ∂X = ∅ then X is a 1-manifold.



1-manifolds



1-manifolds

I It is known that if X is a connected 1-manifold with boundary,
then X is homeomorphic to R, [0,∞〉, [0, 1] or the unit circle
S1.



1-manifolds

Theorem
Let (X , d , α) be a nice computable metric space. Suppose M is a
co-c.e. set which is a 1-manifold with boundary and such that M
has finitely many components. Then the following implication
holds:

∂M computable =⇒ M computable .

In particular, each co-c.e. 1-mainfold in (X , d , α) with finitely
many components is computable.

Remark
This theorem does not hold if we drop the assumtion that M has
finitely many components!



1-manifolds

Theorem
Let (X , d , α) be a nice computable metric space. Suppose M is a
co-c.e. set which is a 1-manifold with boundary and such that M
has finitely many components. Then the following implication
holds:

∂M computable =⇒ M computable .

In particular, each co-c.e. 1-mainfold in (X , d , α) with finitely
many components is computable.

Remark
This theorem does not hold if we drop the assumtion that M has
finitely many components!



Proof (sketch)



Proof (sketch)



References

Vasco Brattka.
Plottable real number functions and the computable graph
theorem.
SIAM J. Comput., 38(1):303–328, 2008.

Vasco Brattka and Gero Presser.
Computability on subsets of metric spaces.
Theoretical Computer Science, 305:43–76, 2003.

Charles O. Christenson and William L. Voxman.
Aspects of Topology.
Marcel Dekker, Inc., New York, 1977.

Zvonko Iljazović.
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Thank you!


