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12:00pm Lars Kristiansen: On Subrecursive Representability of Irrational Numbers: Continued Fractions and Contraction maps
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9:30am Invited talk - Joël Ouaknine
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2:00pm Excursion

7:00pm Conference dinner

Thursday, July 11
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12:45pm Lunch
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Completeness is Overrated (. . . Sometimes)

Hannes Diener∗

joint work with Matthew Hendtlass∗

June 26, 2019

It is a common theme in computable/constructive analysis that theorems which
are not (uniformly) computable often can be made so by adding the assumption that
the underlying space is complete. In Bishop style constructive mathematics this is
cryptically known as the “lambda technique”, which owes its name to the common
pattern of choosing a binary sequence—traditionally labelled lambda—which in turn
is used to construct a Cauchy sequence.

More specific: the crucial construction involves a sequence (xn)n>1 converging to
a limit x and a binary, increasing sequence (λn)n>1 which switches to 1 if—vaguely
speaking—something interesting happens. We then combine all of these into a new
sequence ((λ ~ x)n)n>1 by setting

(λ ~ x)n =

{
xm if λn = 1 and λm = 1−λm+1

x∞ if λn

Any such constructed sequence is automatically Cauchy, so if we are working in a com-
plete space it converges. In this talk we are going to show that in most cases a weakened
form of completeness is actually sufficient. We will show that there is a plethora of ex-
amples to which this generalisation applies. The most prominent examples will be the
Kreisel-Lacome-Shoenfield theorem [4], which states that all (computable) real-valued
functions on a complete metric space are continuous, and the problem of basic path
glueing, which fundamentally underlies the development of homotopy theory.

Of course, none of this would be interesting, if there were no good examples of
spaces that are computably complete in the weakened sense but not complete. Indeed,
we will show that there are many natural spaces falling into this category.

References
[1] H. Diener. Variations on a theme by Ishihara. Mathematical Structures in Com-

puter Science, 25:1569–1577, 10 2015.

[2] H. Diener and M. Hendtlass. Bishop’s lemma. Mathematical Logic Quarterly,
64(1-2):49–54, 2018.

[3] H. Diener and M. Hendtlass. Complete: When enough is enough. Documenta
Mathematica, 2019. to appear.

[4] D. L. G. Kreisel and J. R. Shoenfield. Fonctionnelles récursivement définissables
et fonctionnelles récursives. C. R. Acad. Sci. Paris, 245:399–402, 1957.

∗University of Canterbury, Christchurch, New Zealand
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Continuous Reductions on the Cantor Space
and on the Scott Domain

Jacques Duparc

Department of Operations
Faculty of Business and Economics

University of Lausanne
1015 Lausanne
Switzerland

Jacques.Duparc@unil.ch

Extended abstract

The Cantor space – 2N – and the Scott domain – P(ω) – are two topologi-
cal spaces whose points are sets of integers. But if the Cantor space deals with
the set of subsets of integers while equipped with a topology of positive and
negative information (conveyed through their characteristic functions via the
product topology of the discrete topology on {0,1}), the Scott domain drops
that condition of negative information only to keep the one of positive infor-
mation through the topology generated by the basis {OF ∣ F ⊆ N, F finite}
where OF = {A ⊆ N ∣ F ⊆ A}.

As a consequence, the Scott domain is not anymore Hausdorff (T2), not
even Fréchet (T1) but only Kolmogorov (T0). So, on one hand it seems
far away from the Cantor space which is a complete separable metric space
(i.e., a Polish space) for the reason it is not even metrizable. But on the
other hand, the Scott domain is a complete separable quasi-metrizable1 space
(i.e., a quasi-Polish space). Moreover, if the Cantor space is universal for 0-
dimensional Polish space2, the Scott domain is universal for all quasi-Polish
space3 as shown by de Brecht [2]. For instance, the Cantor space is homeo-

1A quasi- metric is a metric without the symmetry condition: d(x, y) = d(y, x).
2Every 0-dimensional Polish space is homeomorphic to some Π0

2 subset of 2N.
3Every quasi-Polish space is homeomorphic to some Π0

2 subset of P(ω).
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2 Jacques Duparc

morphic to the following set

{A ⊆ N ∣ ∀n ∈ N (2n ∈ A ⇐⇒ 2n + 1 ∉ A)}.

More results by de Brecht suggest that a reasonable descriptive set theory
still holds in the quasi-Polish setting. However, very little is known about
the Wadge order in this context [5, 6, 1, 4]. The Wadge order ≤W — named
after Bill Wadge [7] — is the quasi-order induced by reductions via contin-
uous functions that compares the topological complexity of the subsets of
a topological space X . i.e., given A,B ⊆ X, A ≤ B holds if there exists a
continuous function f ∶X →X such that for all x ∈X, x ∈ A ⇐⇒ f(x) ∈ B.

We outline the main features of the Wadge order on the Cantor space –
the beautiful Wadge hierarchy – and on the Scott domain – not even a well
quasi order (a result due to Louis vuilleumier [3]) – and compare these two.

References

[1] Verónica Becher and Serge Grigorieff. Wadge hardness in Scott spaces
and its effectivization. Math. Structures Comput. Sci., 25(7):1520–1545,
2015.

[2] Matthew de Brecht. Quasi-polish spaces. Annals of Pure and Applied
Logic, 164(3):356–381, 2013.
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domain is not a well-quasi-order. arXiv preprint arXiv:1902.09419, 2019.

[4] Luca Motto Ros, Philipp Schlicht, and Victor Selivanov. Wadge-like re-
ducibilities on arbitrary quasi-Polish spaces. Math. Structures Comput.
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[5] Victor L. Selivanov. Hierarchies in φ-spaces and applications. MLQ Math.
Log. Q., 51(1):45–61, 2005.

[6] Victor L. Selivanov. Towards a descriptive set theory for domain-like
structures. Theoret. Comput. Sci., 365(3):258–282, 2006.
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A Higher-Order Approach of Complexity in
Computable Analysis

Hugo Férée

Second-Order Complexity in Analysis Mainly focused on finite objects,
the notion of computability has been generalised to most domains of interest
mostly via the Type-two Theory of effectivity [Wei00] which relies on second-
order computations.

Complexity, however, has only been extended to computable analysis on
a case-by-case basis, starting for example with real numbers and real func-
tions [Ko91] or more recently with real operators [KC10].

Let us recall that a general definition for complexity could be: a bound on
computation time (for example) with respect to a bound on the size of the input.
The main difficulty here is then to define a relevant notion of size for the inputs.
Kapron and Cook [KC96] provide such a definition for first-order functions,
which together with the oracle Turing machine model induce a relevant notion
of complexity for second-order computations.

It is then relatively straightforward to generalise this to define the complexity
of a function between two represented spaces as the (second-order) complexity
of its realiser. But this approach does not always induce a relevant notion of
complexity.

Limitations of Second-order Computations Indeed, one could expect
that given a represented function space, its application function is computable
in feasible time. But we have shown [FH13] that the running time of the appli-
cation function of certain such spaces cannot even be bounded with respect to
the size of its inputs, whichever representation function this space is equipped
with.

Intuitively, such spaces are intrinsically second-order spaces, like finite sets
are of order 0 as well as real numbers and real functions are of order 1 (they can
be meaningfully represented by first-order functions). This suggests a poten-
tial solution: using higer-order representation spaces instead of first-order ones
(Σ∗Σ∗

for example).

Higher-Order Complexity Theory The main obstacle to this idea is that
there was no generic notion of complexity for higher-order functions until re-
cently. Indeed, there are already several models of computation for such objects,
but the main missing ingredient was, once again, a relevant notion of size.

We have thus proposed [Fér17] such a definition using game semantics [Nic+96;
HO00]. This framework can be seen as a way of representing a computation as
a dialogue between a machine and its input, where each of them can ask finite
amounts of information about the other, in similar way to an oracle Turing
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machine which can query its input at given points. We obtain a general defini-
tion of complexity for higher-order functions (namely pcf), as well as a class of
polynomial-time computable functions, which satisfies the basic properties that
one should expect from it.

Our goal will now be to study this new, promising definition and see whether
we can use it in a "Higher-type Theory of Effectivity", extending tte to handle
complexity in a meaningful way.

References
[Fér17] Hugo Férée. “Game semantics approach to higher-order complexity”.

In: J. Comput. Syst. Sci. 87 (2017), pp. 1–15.
[FH13] Hugo Férée and Mathieu Hoyrup. “Higher-order complexity in anal-

ysis”. In: CCA 2013: Computability and Complexity in Analysis.
Nancy, France: FernUniversität in Hagen, 2013.

[HO00] John. Martin. Elliott. Hyland and C. -H. Luke Ong. “On Full Ab-
straction for PCF: I, II, and III”. In: Inf. Comput. 163.2 (2000),
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[KC10] Akitoshi Kawamura and Stephen Cook. “Complexity theory for op-
erators in analysis”. In: Proceedings of the 42nd ACM Symposium on
Theory of Computing. STOC ’10. Cambridge, Massachusetts, USA:
ACM, 2010, pp. 495–502.

[KC96] Bruce M. Kapron and Stephen A. Cook. “A New Characterization
of Type-2 Feasibility”. In: SIAM Journal on Computing 25.1 (1996),
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Total Weihrauch reducibility

Guido Gherardi
Dipartimento di Filosofia e Comunicazione, Università di Bologna, Italy

guido.gherardi@unibo.it

In computable analysis usually problems with partial domains are investigated. Such problems
are defined by formal statements of the form

(∀x ∈ X)(x ∈ D ⇒ (∃y ∈ Y )P (x, y))

which show that the existence of a y such that P (x, y) depends on the satisfaction of the premise
x ∈ D.

There are nevertheless natural ways to make problems independent of the their premises. A
simple idea is to accept every y ∈ Y as a valid output when the premise x ∈ D is not satisfied.
This is in agreement with the ex falso quodlibet logical principle according to which the choice of
y is irrelevant for the truth of the conditional x ∈ D ⇒ P (x, y) when x /∈ D. This automatically
suggests a possible candidate for a modification of our original problem meeting our requirement:

Definition 0.1 (Totalization) For every problem f :⊆ X ⇒ Y the totalization of f is defined as

Tf : X ⇒ Y, x 7→
{
f(x) if x ∈ dom(f)
Y otherwise.

An interesting example is given by the totalizations TCX of the closed choice operators CX :⊆
A−(X) ⇒ X,A 7→ A, accepting any x ∈ X as a valid solution for the input ∅.

Since problems usually have partial domains (as well as space representations), realizers are
assumed to be in general partial functions; in other words, for a realizer F of f the existence of
F (p) is not guaranteed if p does not denote an element in dom(f). On the contrary, in this talk I
will use total realizers to introduce the notion of total Weihrauch reducibility :

Definition 0.2 (Total Weihrauch reducibility) Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be prob-
lems. We define:

f ≤tW g :⇐⇒ (∃ computable H,K :⊆ NN → NN)(∀G `t g) H〈id, GK〉 `t f .

(here `t means that realizers are assumed to be total ; the strong total Weihrauch reducibility
≤stW is defined analogously). In this definition, the representations of the spaces X,Y, U, V are
replaced by computably equivalent precomplete representations. Intuitively, a precomplete repre-
sentation of a space allows us to see all computable realizers of problems with range in that space
as total:

Definition 0.3 (Precompleteness) δ :⊆ NN → X is said to be a precomplete representation, if
for any computable F :⊆ NN → NN there exists a total computable G : NN → NN such that

δF (p) = δG(p)

for all p ∈ dom(F ).

1



Total Weihrauch reducibility can be characterized in terms of the usual Weihrauch reducibility
by using the completion functional f 7→ f defined through space completions. The completion X of
a represented space X is given by the space X∪{⊥}, for ⊥ /∈ X, equipped with a fixed precomplete
representation. Space completions have been studied by D. Dzhafarov in [1]. The completion of a
problem is then defined as follows:

Definition 0.4 (Completion) Let f :⊆ X ⇒ Y be a problem. We define the completion of f by

f : X ⇒ Y , x 7→
{
f(x) if x ∈ dom(f)
Y otherwise.

It holds:

Lemma 0.5 (Completion and total Weihrauch reducibility) f ≤tW g ⇐⇒ f ≤W g for all
f and g (and analogously for ≤stW).

It can be shown that the completion operator is a closure operator. Although f ≡stW f holds for
every problem f , a natural question to ask is, for a given f , whether f ≡W f (we call the problems
satisfying this equivalence complete). Complete problems are important, since they determine the
same cone both with respect to ordinary Weihrauch reducibility and total reducibility. In this talk
I will show examples of problems that are complete, and others that are not, with a particular
emphasis on the choice principles CX . Strictly related, I will analyze which computational classes
(non deterministic, Las Vegas, with finitely many mind changes,...) are preserved downwards by
total Weihrauch reducibility.

Similarly, I will investigate which choice operators CX are Weihrauch equivalent to their total-
izations TCX ; moreover, operators CX and TCX will be compared with each other.

Dual to the notion of completeness is that of co-completeness:

Definition 0.6 (Co-completeness) f is called co-complete if f ≤W g ⇐⇒ f ≤W g for all g.

Likewise one can define the notion of co-totality and the corresponding strong versions.
The relationships between completeness and co-completeness will be discussed and important

examples of co-complete problems will be presented.
Total Weihrauch reducibility and problem completions are far from being merely arbitrary no-

tions with no particular interesting application. They allow us to transform the ordinary Weihrauch
lattice into a Brouwer algebra, and even more, into a model of Jankov logic (intuitionist logic plus
the law of the weak excluded middle ¬A∨¬¬A). To obtain that, one needs to define suitable con-
junction, disjunction and implication operators over the structure of the parallelized total Weihrauch
degrees induced by the reduction relation ≤ptW (where f ≤ptW g ⇐⇒ f ≤tW ĝ). This is interesting,
since Higuchi and Pauly [2] had previously proved that the (ordinary) parallelized Weihrauch lattice
is not a Brouwer algebra.

(Joint work with Vasco Brattka)

References

[1] D. D. Dzhafarov. Joins in the strong Weihrauch degrees. arXiv:1704.01494

[2] K. Higuchi, A. Pauly: The degree structure of Weihrauch reducibility. Logical Methods in
Computer Science 9(2:02):1–17. 2013
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Type-two Feasibility via Bounded Query Revision

Bruce M. Kapron
University of Victoria
Victoria, BC, Canada
bmkapron@uvic.ca

The problem of generalizing the notion of polynomial time to a type-two setting, where inputs include
not only finitary data, e.g., numbers or strings of symbols, but also functions on such data, was first posed
by Constable in 1973 [3], where he also gave a possible characterization of such a class. Subsequently,
Mehlhorn [13], using a generalization of Cobham’s scheme-based approach [2], gave a characterization of
a class L() which satisfied a Ritchie-Cobham property, showing robustness with respect to oracle Turing
machine (OTM) computation. It was later shown by Clote [1] that Mehlhorn’s class was a proper extension
of Constable’s. While the Ritchie-Cobham property provided some computational intuition for Mehlhorn’s
class, the question of generalizing familiar the type-one notion of poly-time TM computation remained open.
Almost two decades later, Kapron and Cook [7] were finally able to give such a characterization, using the
notions of function length and second-order polynomials. In particular, for a function ϕ : Σ∗ → Σ∗, they
defined the function |ϕ| : ω → ω by |ϕ|(n) = max|a|≤n |ϕ(a)|. They proved that the functionals computable
in polynomial time with respect to the length of function and string inputs coincide exactly with L().

The characterization provided by [7] still had some shortcomings. The first is that the type-two functional
λϕλa.|ϕ|(|a|) is itself not in L(). Reasoning about resource bounds involving function lengths and second-
order polynomials can be difficult, and unintuitive. A second criticism is that the notion of function length
may be viewed as being somewhat ad hoc, and may not be adequate if the goal is to provide a general account
of feasibility for type-two functionals. With respect to this criticism, Cook in [4] proposes a notion of intuitive
feasibility based on two conditions: (1) Oracle polynomial time (OPT) computability and (2) preservation
of type-one polynomial time. He also demonstrated the existence of a well-quasiordering functional L
that satifies these conditions but is not in L(). Subsequent work cast doubt on whether these conditions
are restrictive enough. In particular Seth [14] showed that L does not preserve the Kalmar elementary
functions, and that more powerful forms of (2), in combination with the Ritchie-Cobham property, lead back
to Mehlhorn’s class L().

Beyond its application in the definition of inuitive feasibility, OPT is interesting in its own right, as a
minimal requirement for type-two feasibility. It is also the starting point for the results we present here. It is
important to note that OPT alone is too lax a notion to characterize type-two feasibility: in particular, the
functional λϕλaλc.ϕ|c|(a) is in OPT, but when applied to the function argument λa.aa (self-concatenation)
results in a function with exponential growth. Motivated in part by the well-known difficulties of working
with second-order polynomials, Kawamura and Steinberg [11] considered a restriction version of OPT which
was adequate for some applications in feasible analysis (e.g., complexity of operators as studied in [10].)
From the above example, an obvious problem with OPT is that is allows unbounded oracle growth, that is,
the answer returned by the oracle may increase in size with every call and result in a computation which
still satisfies a OPT run-time bound. A natural mitigation is to limit by a constant the number of times an
answer of increasing size may be returned. The resulting class was dubbed strong polynomial time (SPT),
and its utility and equivalence to full L() for length-monotone function inputs was demonstrated.

Unfortunately, SPT does not capture L() for arbitrary function inputs. A simple example is the functional
λϕλa.maxb⊆a ϕ(b), where ⊆ denotes string prefix. Clearly, for any query strategy there is an input ϕ which
violates the SPT condition. On the other hand, this functional is computable in OPT in such a way that
queries to the function input do not increase in size more than a constant number of times (in fact they may
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be made in stricty decreasing ⊆-order.) Starting from this observation Kapron and Steinberg [9] proposed
a new class dubbed moderate polynomial time (MPT) analagously to SPT but with respect to query size.
MPT is also strictly contained in L(), although the example in this case is more artificial. In both the case
of SPT and MPT, it appears that their weakness is closely related to the fact that the classes are not closed
under functional substitution (i.e. operator composition.) The main result of [9] shows that this is exactly
the case. If for a class X of functionals containing all type-one poly-time functions we write λ(X)2 for the
2-section of the λ-closure of X, then λ(SPT)2 = λ(MPT)2 = L().

In the above equivalence, the adequacy of SPT and MPT is proved by showing that the Cook-Urquhart
recursor R [5] is contained in λ(SPT)2 and in λ(MPT)2. This recursor captures Cobham’s limited recursion
on notation at type level two. One well-studied drawback of such recursion schemes is the need for external
bounding at each application of the step function. Here the approach of intrinsically bounding by a constant
the number of size increases in the step function appears as an alternative. In [8], Kapron and Steinberg
show that such an approach works. In particular, they define the iterator I !k(ϕ,a, c) = ϕ`(a) where ` ≤ |a|
is minimal such that the sequence of applications of ϕ contains no more than k size increases, and show that
for every k ≥ 1, λ({I !k})2 = L(). A similar result is shown for an iterator with bounded input revision.

Further evidence of the utility of bounded query revision is provided by [6]. This work builds on Marion’s
characterization of type-one polynomial time using an imperative langauge with a type system based on
secure flow information analysis [12], and gives a tier-based typing system for an extension of Marion’s
language with oracles. The terminating programs that are typable in this language are in MPT, and the 2-
section of the lambda closure of the functionals they define are exactly L(). Type inference for this langauge is
decidable in polynomial time, thus providing a framework for tractable reasoning about type-two feasibility.

References

[1] P. Clote. A note on the relation between polynomial time functionals and Constable’s class K. In CSL
1995, pages 145–160.

[2] A. Cobham. The intrinsic computational difficulty of functions. In Proc. Intl. Conf. on Logic, Method-
ology, and Philosophy of Science, pages 24–30. 1965.

[3] R. L. Constable. Type two computational complexity. In STOC 1973, pages 108–121.

[4] S. A. Cook. Computational complexity of higher type functions. In Proc. ICM 1990, pages 55–69, 1991.

[5] S. A. Cook and A. Urquhart. Functional interpretations of feasibly constructive arithmetic. APAL,
63:103–200, 1993.
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On the Zeros of Exponential Polynomials 

Joël Ouaknine, Max Planck Institute for Software Systems, Saarbrücken, Germany 

 

Exponential  polynomials  are  central  objects of  study  in  analysis,  notably because  they  are 

solutions of linear differential equations with constant coefficients. In this talk, I examine some 

fundamental decision problems for real‐valued exponential polynomials, such as the existence 

of  finitely  many  zeros,  infinitely  many  zeros,  and  divergence  at  infinity.  Although  the 

decidability and complexity of such problems are open, some partial and conditional results 

are known, occasionally resting on certain number‐theoretic hypotheses such as Schanuel's 

conjecture. More generally, the study of algorithmic problems for exponential polynomials (or 

equivalently  regarding  the  behaviour  of  linear  dynamical  systems)  draws  from  an  eclectic 

array of mathematical tools, ranging from Diophantine approximation to algebraic geometry. 

I will present a personal overview of the field and discuss areas of current active research. 

 

This is joint work with James Worrell, Ventsi Chonev, and Joao Sousa‐Pinto. 



Computational Complexity of PDEs

Svetlana Selivanova

Supported by Korean research foundation grant NRF-2017R1E1A1A03071032 and
by the Korean Ministry of Science and ICT grant NRF-2016K1A3A7A03950702.

sseliv@kaist.ac.kr, KAIST, School of Computing

We investigate complexity bounds for computing solutions to initial-
value and boundary-value problems (IVPs and BVPs) for systems of

linear partial differential equations (PDEs) ~ut =
m∑
i=1

Bi(x)~uxi
. The in-

vestigation is based on the rigorous computable analysis framework [2]
and the classical computational complexity theory hierarchy

L ⊆ NC ⊆ P ⊆ NP ⊆ ]P ⊆ ]P ]P ⊆ . . . ⊆ PSPACE ⊆ EXP,

extended to the real setting [5]. We measure the complexity depending
on the output precision parameter n, corresponding to computation of
the output approximations with guaranteed precision 1/2n.

It is known that (a) ordinary differential equations (ODEs) with a
polynomial/analytic right-hand side can be solved in PTIME [1]; (b)
general non-linear ODEs with C1-smooth right-hand part are optimally
solved by Euler’s Method in PSPACE [3], equivalently: in polynomial
parallel time; (c) solving Poisson’s linear PDEs corresponds to the
complexity class ]P [4].

Our main contributions are as follows:
1. Suppose the given IVP and BVP be well posed in that the clas-

sical solution ~u : [0; 1] × Ω → R (i) exists, (ii) is unique, and (iii)
depends continuously on the initial function ϕ = ~u(0, x). More pre-
cisely we assume that u(t, x) ∈ C2 and its C2-norm is bounded linearly
by C2-norms of ϕ(x) and Bi(x) (in functional spaces guaranteeing all
the required properties). Moreover suppose that the given IVP and
BVP admit a (iv) stable and (v) approximating with at least the first
order of accuracy (and approximation coefficient) explicit difference
scheme represented by the O(2n)×O(2n) matrix An.



If An and ϕ are PTIME computable, then the solution function
~u belongs to the real complexity class PSPACE. If An is additionally
circulant of constant bandwidth (as for periodic BVPs), then ~u is in
]P ]P ; if An is two-band (as for some IVPs), then ~u is in ]P .

This result generalizes [7, 4].
2. If the matrix coefficients Bi(x) and initial function ϕ(x) are,

in addition analytic then their PTIME/PolyLogSPACE computability
implies PTIME/PolyLogSPACE computability of the solution ~u(t, x).

This result generalizes the result of [1] about analytic ODEs.
As a main ingredient of the proofs we develop and analyze from

the complexity viewpoint an efficient real polynomial/matrix/operator
powering algorithm.

This is a joint work with Martin Ziegler, Ivan Koswara and Gleb
Pogudin, partially published in [6].
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Overt choice
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We introduce and study the notion of overt choice for countably-based spaces and for CoPol-
ish spaces. Overt choice is the task of producing a point in a closed set specified by what
open sets intersect it. We show that the question of whether overt choice is continuous for
a given space is related to topological completeness notions such as the Choquet-property;
and to whether variants of Michael’s selection theorem hold for that space. For spaces where
overt choice is discontinuous it is interesting to explore the resulting Weihrauch degrees,
which in turn are related to whether or not the space is Fréchet-Urysohn.

On the way, we suggest a definition of a computable quasi-Polish space and prove several
characterizations, mirroring independent work by Hoyrup, Royas, Selivanov and Stull [4].
Some prior results regarding overt choice on computable metric spaces are due to Brattka
and Presser [2], and to Brattka [1].

The full preprint is available as [3].
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DENSITY OF MAXIMAL COMPUTABILITY STRUCTURES

KONRAD BURNIK AND ZVONKO ILJAZOVIĆ

One way to impose computability on a metric space (X ,d) is to fix an effective sepa-
rating sequence in (X ,d), i.e. a dense sequence α = (αi) in (X ,d) such that the distances
d(αi,α j) can be effectively computed. Then a sequence (xi) in X is called computable if
(xi) is computable with respect to α . If we denote by S the set of all such sequences in X ,
then S has the following two properties:

(i) if (xi),(y j) ∈S , then the distances d(xi,y j) can be effectively computed;
(ii) if (xi) ∈S and (y j) is a sequence in X which is computable with respect to (xi),

then (y j) ∈S .
A more general way to impose computability on (X ,d) is the following. Let S be

any set of sequences in X which satisfies the properties (i) and (ii) above. We say that S
is a computability structure on (X ,d) [7]. A sequence (xi) in X is called computable if
(xi) ∈S and a point x ∈ X is called computable if (x,x,x, . . .) ∈S .

A computability structure on (X ,d) which consists of those sequences which are com-
putable with respect to some fixed effective separating sequence α in (X ,d) is called sep-
arable [2]. Not every computable structure is separable, for example if (X ,d) is a metric
space and x ∈ X , then {(x,x,x, . . .)} is a computability structure on (X ,d) which is clearly
not separable if X has at least two points.

A computability structure M on (X ,d) is called maximal if there is no computability
structure S on (X ,d) such that M ⊆ S and M 6= S . Each separable computability
structure is maximal, but a maximal computability structure need not be separable. For
example, it is known that for each a ∈ [0,1] there exists a unique maximal computability
structure Ma on [0,1] (with respect to the Euclidean metric) in which a is a computable
point, but Ma is not separable if a is an incomputable real number [2].

A computability structure S on a metric space (X ,d) is called dense if the set of all
computable points in S is dense in (X ,d). Each separable computability structure is
clearly dense, so it is a dense maximal structure.

We consider the relationship between separable, maximal and dense maximal structures
on subspaces of Euclidean space Rn (with respect to the Euclidean metric). In general, a
maximal computability structure need not be dense. For example, if X = [0,1]∪{2}, then
there exists a maximal computability structure on X which is not dense. Furthermore, if
X ⊆ R2 is the boundary of a triangle, then X has maximal computability structures which
are not dense (note that such an X is connected). We prove the following.

Theorem 1. Let X ⊆ Rn be a convex set. Then each maximal computability structure on
X is dense.

On the other hand, if X ⊆ Rn is a convex set, a dense maximal computability structure
on X need not be separable. Namely, the mentioned maximal computability structure Ma
on [0,1] is dense (for each a ∈ [0,1]) and it need not be separable. However, there are
subspaces of Rn on which each dense maximal computability structure is separable, for

Supported by the Croatian Science Foundation under project 7459 CompStruct.
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2 KONRAD BURNIK AND ZVONKO ILJAZOVIĆ

example the boundary of a triangle is such a space. Moreover, we have the following
result. (By a sphere in Rn we mean a set of the form {y ∈ Rn | d(y,x) = r}, where x ∈ Rn

and r > 0 are fixed.)

Theorem 2. Let X ⊆Rn be a boundary of a simplex or a sphere. Then each dense maximal
computability structure on X is separable.

Furthermore, if X is a sphere with radius r, then X has a separable computability struc-
ture if and only if r is a computable number. Therefore, by Theorem 2, if X is a sphere
with an incomputable radius, none of the maximal computability structures on X is dense.

In case n = 2 the result of Theorem 2 for spheres, i.e. circles, can be generalized in the
following way. Let X ⊆R2 be any conic (a hyperbola, a parabola or an ellipse). Then each
dense maximal computability structure on X is separable.

The statement of Theorem 2 does not hold for topological spheres (i.e. spaces which
are homeomorphic to a sphere). We construct a topological circle X in R2 and a dense
maximal computability structure on X which is not separable.

Finally, we consider certain polyhedra which are more general than the boundary of a
triangle. Let K be a nonempty finite simplicial complex of dimension 1 in Rn, i.e. a family
of line segments in Rn and their vertices such that for each two line segments I,J ∈ K such
that I 6= J and I∩ J 6= /0 we have I∩ J = {v}, where v is a vertex of both I and J. Suppose
that each vertex of K belongs to two distinct line segments of K. Let X =

⋃
I∈K I. Then

each dense maximal computability structure on X is separable and there exists a maximal
computability structure on X which is not dense.
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[2] Zvonko Iljazović and Lucija Validžić. Maximal computability structures. Bulletin of Symbolic Logic,
22(4):445–468, 2016.

[3] Alexander Melnikov. Computably isometric spaces Journal of Symbolic Logic, 78:1055–1085, 2013.
[4] Marian Pour-El and Ian Richards. Computability in Analysis and Physics. Springer-Verlag, Berlin-Heielberg-

New York, 1989.
[5] Klaus Weihrauch. Computable Analysis Springer, Berlin, 2000.
[6] M. Yasugi, T. Mori and Y. Tsujji. Effective properties of sets and functions in metric spaces with computabil-

ity structure. Theoretical Computer Science, 219:467–486, 1999.
[7] M. Yasugi, T. Mori and Y. Tsujji. Computability structures on metric spaces. Combinatorics, Complexity and

Logic Proc. DMTCS96 (D.S. Bridges et al), Springer, Berlin, 351–362, 1996.
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Abstract. As is well known, there are many ways to represent irrational
numbers: Dedekind cuts, Cauchy sequences, base b-expansions, etc. All of them
induce the same class of computable real numbers relative full Turing com-
putability. But when we restrict the notion of computability, we obtain quite
an interesting interaction between the different representations. The first results
in this direction concern the class of the primitive recursive functions. Specker
proves in [6] that the set of real numbers with primitive recursive Dedekind cut
is properly contained in the set of real numbers with primitive recursive deci-
mal expansion, which in turn is a proper subset of the set of real numbers with
primitive recursive Cauchy sequence (and primitive recursive modulus of conver-
gence). Lehman constructs in [5] a real number, which does not have a primitive
recursive Dedekind cut, but whose expansion in any base is primitive recursive.
Similar results relative the class of functions, computable in polynomial-time can
be found in Ko’s paper [2].

Kristiansen in [3,4] has begun a systematic research of all known representa-
tions of irrational real numbers and many others. His results are formulated in
broad generality with respect to arbitrary subrecursive classes, containing the
elementary functions and closed under composition and bounded or unbounded
primitive recursion (but not under unbounded search). Kristiansen introduces
several new representations of irrational numbers by sum approximations. For
example, the sum approximation from below in a fixed base b, in principle, enu-
merates the positions of all non-zero digits of the base-b expansion of the real
number. A symmetric representation is the sum approximation from above in
base b. The links between these representations and the above-mentioned ones
are rather complex. For example, combined with Dedekind cuts, the sum approx-
imations from below and above give rise to seven different complexity classes of
real numbers. In a recent paper [1] the present author, in collaboration with
Kristiansen and Stephan, has studied some properties of general sum approxi-
mations, which are sum approximations uniform in the base.

The aim of the talk is to present a survey of known results on subrecursive
representability of real numbers, as well as some new results, concerning the set
of real numbers having a subrecursive expansion in some base and the set of real
numbers having a subrecursive sum approximation in some base.

Let S be a sufficiently large natural subrecursive complexity class.

mailto:ivandg@yahoo.com


For any natural number b ≥ 2 we denote by SbE the set of all irrational
numbers in (0, 1), whose expansion in base b belongs to S.

We also denote by SC the set of all irrational numbers in (0, 1), which have
a Cauchy sequence in S.

A real number α is E2-irrational iff there exists a function v ∈ E2, such that∣∣α− m
n

∣∣ > 1
v(n) for all integers m,n with n > 0.

Our main result is the following

Theorem. For any E2-irrational number α in SC there exists an E2-irrational
number β in SC , such that α+ β /∈

⋃
b≥2

SbE.

Now let R any of the known representations, not equivalent to Cauchy se-
quences (thus R might be continued fractions, sum approximations, etc.). Let
SR be the set of irrational numbers in (0, 1), which possess an R-representation,
computable through functions from S. Then we have

{ α ∈ SC | α is E2 -irrational } ⊆ SR ⊆
⋃
b≥2

SbE

and it follows from the Theorem that SR is not closed under addition.
Based on this observation we conclude that the Cauchy sequence represen-

tation is the only one suitable for subrecursive analysis.

Keywords: representations of irrational numbers, subrecursive classes, base
expansions, sum approximations
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Computability of topological entropy in the
logistic family∗
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In the theory of Dynamical Systems, topological entropy htop is a suitable
tool to measure the dynamical complexity of a system, and its computabil-
ity is a question of major interest [7]. In the case of symbolic dynamical
systems, there is a fair amount of theory about this problem, ranging from
non-computable examples [8] to more general characterizations for subshifts
of finite type in one or more dimensions [6, 4].

For “non symbolic” systems, however, not much seems to be known. In
the present work we consider the problem for the well known logistic family,
given by

fr(x) = rx(1− x), where x ∈ [0, 1], and r ∈ [0, 4] is the parameter.

This family of systems exhibits a rich variety of behaviours as the parameter
changes – from trivial to chaotic dynamics. Although there exist several
numerical algorithms to estimate the topological entropy htop(fr) given the
parameter r, most of them rely on the so called kneading sequence [1], which
is not known to be uniformly computable from the parameter [2].

Our main result is the following:

Theorem: The topological entropy htop(fr) in the logistic family is com-
putable as a function of r ∈ [0, 4].

The proof of this statement does not rely on the kneading sequence. In-
stead, we compute a sequence of parameters ri corresponding to the centres of

∗This work is part of the author’s undergraduate thesis under the supervision of pro-
fessor Cristóbal Rojas (http://www.mat-unab.cl/∼crojas/).
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the hyperbolic components of the Mandelbrot set, together with their topo-
logical entropies, which can be computed using standard techniques involv-
ing subshifts of finite type associated to the system. Next, using dynamical
properties of hyperbolic components we describe a procedure to enumerate
a sequence of dyadic parameters {dki} which is dense in these components,
and for which we can compute the topological entropy. This construction is
possible by the means of the Main Theorem of Section 5.3 in [3]. Taking ad-
vantage of the density of hyperbolic components in the space of parameters
[5], we describe an algorithm that, provided with arbitrarily good approxima-
tions of a given parameter r ∈ [0, 1], outputs arbitrarily good approximations
of the value htop(fr).
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A WEAKLY COMPUTABLE NUMBER WHICH CAN BE ONLY

DECOMPOSED INTO RANDOM LEFT-COMPUTABLE NUMBERS

PETER HERTLING AND PHILIP JANICKI

Universität der Bundeswehr München

In this paper we are concerned with left-computable real numbers and with weakly
computable real numbers. A real number is called left-computable if there exists a
computable increasing sequence of rational numbers converging to it. The set of the left-
computable numbers is a widely investigated real number class and of particular interest
both to computable analysis and to algorithmic information theory. For left-computable
real numbers there is a natural reducibility relation due to Solovay [9], which leads to a
classification of left-computable real numbers according to their Solovay degrees.

Definition 1 ([9]). Let x and y be left-computable numbers. We say that x is Solovay-
reducible to y (denoted by x ≤S y) if there exist computable increasing sequences (xn)n
and (yn)n of rational numbers converging to x and y, respectively, and a constant c > 0
such that for all n ∈ N we have:

x− xn < c · (y − yn)

It is obvious that the Solovay reduction is reflexive, and it is easy to see that it is transitive.
As usual, one defines an equivalence relation ≡S on the left-computable numbers by
x ≡S y if, and only if, x ≤S y and y ≤S x. Its equivalence classes are called Solovay
degrees. There is a smallest Solovay degree, the set of computable numbers [2]. And there
is a largest Solovay degree whose elements can be described in several different ways.

Proposition 2 ([3, 9, 2, 6]). For a left-computable number x the following are equivalent:

(1) For all left-computable numbers y we have y ≤S x.
(2) The fractional part of x (that is, the unique number x′ ∈ [0, 1[ with x− x′ ∈ Z) is

an Omega number in the sense of Chaitin [3].
(3) x is Martin-Löf random [7].

Furthermore ≤S is an upper semilattice: The ≤S-supremum of the Solovay degrees of two
left-computable numbers x and y is the Solovay degree of the left-computable number
x + y [2]. For further results on Solovay degrees see [5] and the monograph [4].
The left-computable numbers do not form a field, but there exists a smallest field
containing all left-computable numbers. This field ist the set of the weakly computable
numbers, which were introduced by Ambos-Spies, Weihrauch and Zheng [1].

Definition 3 ([1]). A real number z is called weakly computable if there exist left-
computable numbers x and y with z = x− y.

E-mail address: peter.hertling@unibw.de, philip.janicki@unibw.de.



If one wishes to understand the computability-theoretic complexity of a weakly computable
real number z one may ask for the Solovay degrees of left-computable numbers x, y with
z = x − y. Any weakly computable number z can be written as the difference of two
left-computable numbers in the largest Solovay degree of left-computable numbers: If
z = x − y for two left-computable numbers x, y and if Ω is a random left-computable
number, then the numbers x′ := x + Ω and y′ := y + Ω are also random left-computable
numbers and they satisfy z = x′ − y′. One may now go into the other direction and
ask whether any weakly computable number can be written as the difference of two
left-computable numbers that are “easy” with respect to the Solovay reduction. The
following theorem gives a negative answer to this question.

Theorem 4. There exists a weakly computable number z such that for all left-computable
numbers x and y with z = x− y both x and y are random.

In other words, there exists a weakly computable number z such that, for all left-
computable numbers x and y, if z = x − y then x and y are elements of the largest
Solovay degree. This theorem is the main result of this paper. The proof is by an infinite
injury priority argument.
In the context of this result the following observation by Rettinger and Zheng [8] is
interesting: For every random weakly computable number z either z or −z is left-
computable. If, for example, z is random and left-computable and z = x − y is a
decomposition of z into two left-computable numbers x and y, then x = y + z must be
random as well while y can even be chosen to be equal to 0. So a weakly computable
number satisfying the property in Theorem 4 cannot be random itself.
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COMPUTABILITY OF SPACES WITH ATTACHED ARCS

ZVONKO ILJAZOVIĆ AND MATEA JELIĆ

A compact subset S of Euclidean space Rn is computable if S can be effectively approx-
imated by finitely many rational points with any given precision. More general than com-
putable are semicomputable sets: a compact set S⊆Rn is semicomputable if S = f−1({0})
for some computable function f : Rn→ R.

In general, a semicomputable set need not be computable. For example, there exists a
line segment in R (or in any Rn) which is semicomputable but not computable. Thus a
semicomputable arc (i.e. a semicomputable set homeomorphic to [0,1]) need not be com-
putable. However, if a semicomputable arc has computable endpoints, then it must be
computable. It is also known that any semicomputable topological circle must be com-
putable.

In a computable metric space, which is a more general ambient space than Euclidean
space, the notions of a computable and a semicomputable set can also be defined and the
general question is: under what conditions is a semicomputable set in a computable metric
space computable? The results for arcs and topological circles also hold in computable
metric spaces and the following definition arises. We say that a topological space ∆ has
computable type if for any computable metric space (X ,d,α) and any topological embed-
ding f : ∆→ X the following implication holds:

f (∆) semicomputable ⇒ f (∆) computable.

For example, each circle has computable type. Moreover, for each n ∈ N \ {0} the unit
sphere in Rn has computable type. In fact, a more general result holds: if M is a compact
manifold, then M has computable type.

On the other hand, [0,1] does not have computable type. However, if (X ,d,α) is a com-
putable metric space and f : [0,1]→ X an embedding such that f ([0,1]) and { f (0), f (1)}
are semicomputable sets, then it easily follows that f (0) and f (1) are computable points
and the previously mentioned result implies that f ([0,1]) is computable. So the following
definition arises.

Let ∆ be a topological space and let Σ be a subspace of ∆. We say that the pair (∆,Σ)
has computable type if for any computable metric space (X ,d,α) and any topological
embedding f : ∆→ X the following implication holds:

f (∆) and f (Σ) are semicomputable ⇒ f (∆) computable.

We have that ([0,1],{0,1}) has computable type. It is also known that (Bn,Sn−1) has
computable type for each n ∈ N\{0}, where Bn is the unit closed ball and Sn−1 is the unit
sphere in Rn. Moreover, if M is a compact manifold with boundary, then (M,∂M) has
computable type. Note that a topological space ∆ has computable type if and only if the
topological pair (∆, /0) has computable type.

Supported by the Croatian Science Foundation under project 7459 CompStruct.
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2 ZVONKO ILJAZOVIĆ AND MATEA JELIĆ

We consider the following general question: if (∆1,Σ1) and (∆2,Σ2) have computable
types and a topological pair (∆,Σ) is obtained from (∆1,Σ1) and (∆2,Σ2) by a certain
topological construction, does (∆,Σ) have computable type?

For example, it is not hard to prove the following result: if (∆1,Σ1) and (∆2,Σ2) have
computable types, then (∆1 t∆2,Σ1 tΣ2) has computable type, where X tY denotes the
disjoint union of topological spaces X and Y .

Let X and Y be topological spaces, let A be a subspace of Y and let f : A→ X be a
continuous function. Then the space X ∪ f Y (so called adjunction space) is defined as a
quotient space obtained from X tY by identifying a and f (a) for each a ∈ A.

We examine adjunction spaces in the context of computable type. In particular, we
examine spaces ∆∪ f [0,1], where ∆ is a topological space and f : {0,1}→ ∆. We imagine
∆∪ f [0,1] as a space which is obtained by gluing an arc to ∆ along its endpoints. The figures
below illustrate two possibilities how a red arc can be glued to ∆ along its endpoints.

We have the following result.

Theorem 1. Let ∆ be topological space which has computable type. Let f : {0,1}→ ∆ be
a function. Then the pair (∆∪ f [0,1],∆) has computable type.

Note that in the previous theorem ∆ is considered as a subspace of ∆∪ f [0,1] in the
obvious way. Note also that, under the assumption of the theorem, the topological space
∆∪ f [0,1] need not have computable type. Namely, let ∆ = {0,1} and f : {0,1}→ {0,1},
f (0) = 0, f (1) = 1. Then ∆ has computable type, but ∆∪ f [0,1] does not have computable
type since ∆∪ f [0,1] is homeomorphic to [0,1].
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There are numerous ways to represent real numbers. We may use, e.g., Cauchy
sequences, Dedekind cuts, numerical base-10 expansions, numerical base-2 ex-
pansions and continued fractions. If we work with full Turing computability, all
these representations yield the same class of computable real numbers. If we
work with some restricted notion of computability, e.g., polynomial time com-
putability or primitive recursive computability, they do not. If we are not allowed
to carry out unbounded search, rather surprising and unexpected situations oc-
cur when we try to convert irrationals from one representation to another. This
phenomenon has been investigated over the last seven decades by Specker [6],
Mostowski [7], Lehman [8], Ko [9, 10], Kristiansen, Georgiev, Stephan [1–5] and
quite a few more.

We will survey some of the results published in [1–3]. Thereafter we will present
some new results on contraction maps, continued fractions and best approxima-
tions.

We restrict our attention to irrationals between 0 and 1. When we say that α is
irrational, we mean that α an irrational between 0 and 1.

Contractions Maps. Contraction maps are known from the theory of metric
spaces. We say that a function F is a contraction map if we have

|F (q1)− F (q2)| < |q1 − q2|

for any rationals q1, q2 where q1 6= q2. For any contraction map F there exists
a unique irrational number α such that we have |α− q| > |α− F (q)| for any
rational q. We say that F represents that α.

Continued Fractions. Continued fractions are well known from the literature.
For any irrational α there is a continued fraction [ 0 ; a1, a2, . . . ], where each ai
is a positive integer, such that

α = 0 +
1

a1 +
1

a2 +
1

a2 + . . .

Best Approximations. Let a and b be relatively prime natural numbers. The
fraction a/b is a left best approximant of α if c/d ≤ a/b < α or α < c/d for any
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natural numbers c, d where d ≤ b. The fraction a/b is a right best approximant of
α if α < a/b ≤ c/d or c/d < α for any natural numbers c, d where d ≤ b. A left
best approximation of α is a strictly increasing sequence of fractions (an/bn)n∈N
such that a0/b0 = 0/1 and each an/bn is a left best approximant to α. A right
best approximation of α is a strictly decreasing sequence of fractions (an/bn)n∈N
such that a0/b0 = 1/1 and each an/bn is a right best approximant to α.

Classes of Irrational Numbers. Let S be a subrecursive class of functions which
is closed under primitive recursive operations. Let

– S[ ] denote the class of irrational that have continued fractions in S
– SF denote the class of irrationals that have contraction maps in S
– S< denote the class of irrationals that have left best approximations in S
– S> denote the class of irrationals that have right best approximations in S
– SD denote the class of irrationals that have Dedekind cuts in S.

Main Results. We have

S< ∩ S> = SF = S[ ] and S< 6⊆ S> and S> 6⊆ S<
and S< ∪ S> ⊂ SD .

Moreover, S< = Sg↑ and S> = Sg↓ where Sg↑ (Sg↓) is the class of irrationals
that have general sum approximations from below (above) in S (general sum
approximations are defined and explained in [3] and [1]).
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1D Brownian Motion (aka Wiener Process) is a the space C0[0; 1] of continuous
functions f : [0; 1] → R s.t. f(0) = 0, equipped with Wiener measure µ. We
approach the question of whether Wiener process is computable [DF13].

Definition 1. Let C := {0, 1}ω denote Cantor space, equipped with the canon-
ical Borel probability measure vol(~w ◦ C) = 2−|~w|. Let X denote a topological
space with representation ξ :⊆ C � X and Borel probability measure µ.
We say that F :⊆ C → dom(ξ) is a ξ-realizer of (a random variable with dis-

tribution) µ if µ(S) = vol
(
F−1

[
ξ−1[S]

])
holds for every Borel S ⊆ X. Call µ

computable if it has a computable realizer.

Note that dom(F ) must be Borel of measure 1. A ξ-realizer amounts to a strong
probabilistic name with respect to the ‘fair’ 50:50 probabilistic process in the
sense of [SS06, §3]. From the perspective of a random variable as a function,
our terminology agrees with [Wei00, §3.1].

Example 2 (Real Unit Interval) Let ρb : C 3 b̄ 7→
∑

j≥0 bj2
−j−1 denote the

continuous (but not admissible) binary representation of the real unit interval
[0; 1]. Then the identity is a computable realizer of the Lebesgues measure on
[0; 1] w.r.t. ρb.

Recall that a sequence Rn :⊆ C → X of random variables converges almost
surely to R :⊆ C → X if the set

{
ū : Rn(ū)→ R(ū)

}
⊆ C has measure 1.

On the other hand for (X, d) a metric space, uniform almost sure conver-
gence of Rn to R means that there exists U ⊆ dom(R)∩

⋂
n dom(Rn) of measure

1 such that supū∈U d
(
Rn(ū), R(ū)

)
→ 0.

Lemma 3. Suppose U ⊆ C has measure 1 and Rn : U → X is a ξ-computable
sequence converging effectively uniformly almost surely to R : U → X in the
sense that there exists a recursive ν : N→ N such that

∀n ≥ ν(m) : supū∈U d
(
Rn(ū), R(ū)

)
≤ 2−m .

Then R is almost surely ξ-computable.

For other notions of randomized computability see [Bos08,BGH15]. A com-
putable realizer R of measure space (X,µ) must be almost surely computable.

∗Supported by the National Research Foundation of Korea (grant NRF-
2017R1E1A1A03071032) and the International Research & Development Program of
the Korean Ministry of Science and ICT (grant NRF-2016K1A3A7A03950702).
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Example 4 (Wiener Process) Let X := C([0; 1],R) denote the space of con-
tinuous real functions W = {Wt}t∈R on the unit interval, equipped with the
uniform metric and the Wiener Measure. Among its well-known implicit ‘rep-
resentations’ in mathematics, we report the following:

a) Let ϕ0(t) = t and

ϕn,j(t) =


2(n−1)/2 · (t− k−1

2n ) k−1
2n ≤ t ≤

k
2n

2(n−1)/2 · (k+1
2n − t)

k
2n ≤ t ≤

k+1
2n

0 otherwise

, 0 ≤ k < 2j, 1 ≤ j ≤ 2n−1

denote the Schauder ‘hat’ functions and Rn,j independent standard nor-
mally distributed random variables. Then following sequence converges to
the Wiener process almost surely:

WN
t (ω) = R0(ω)t+

N∑
n=1

2n−1∑
j=1

Rn,j(ω)ϕn,j(t) (1)

b) Let Ri be independent standard normally distributed random variables. Then
following sequence converges to the Wiener process in L2 metric:

WN
t (ω) =

√
2

N∑
i=1

Ri
sin (k − 1

2)πt

(k − 1
2)π

(2)

c) Let (Xi)i∈N be random variable with mean 0 and variance 1 and Sn =∑n
i=1Xi Then following sequence converges to Wiener process in distribu-

tion:

WN
t (ω) =

SbNtc√
N

(3)

Item (a) is mentioned in [Col15, §6]. None of the sequences in (a), (b), and (c)
converges uniformly almost surely; hence Lemma 3 does not apply.
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A COMPUTABILITY-THEORETIC PROOF
OF LUSIN’S THEOREM

RUSSELL MILLER

Abstract. Lusin’s Theorem states that, for every Borel-measurable function f on
R and every ε > 0, there exists a continuous function g on R which is equal to f
except on a set of measure < ε. We give a proof of this theorem using computability
theory, relating it to the near-uniformity of the Turing jump operator. From the
proof we derive results on the extent to which g can be produced effectively from
an oracle and a Turing program computing f .

Lusin’s Theorem is a standard result in a first course in real analysis. It describes
the extent to which a “reasonably nice” function on the real numbers R (formally, a
Borel-measurable function) can fail to be continuous. Along with related results, it
is frequently listed as one of Littlewood’s Three Principles.

Theorem 1 (Lusin’s Theorem, 1912). For every Borel-measurable function f ∶ R→ R
and every ε > 0, there exists a continuous function g ∶ R→ R such that

µ({x ∈ R ∶ f(x) ≠ g(x)}) < ε.
Alternative versions allow ±∞ as values of the functions in question. Lusin’s Theo-

rem is the best possible result in this direction, as there do exist measurable functions
f such that, for every continuous g, µ({x ∈ R ∶ f(x) ≠ g(x)}) > 0.

In computable analysis, the Borel-measurable functions f ∶ R → R are precisely
those that can be computed by a Turing functional Φ, using an oracle (S ⊕X)(α),
where S ⊆ ω is a fixed oracle set, α is a fixed countable ordinal, and X is any
Cauchy sequence that converges effectively to its limit x ∈ R. Defining the α-th jump
(S⊕X)(α) requires a fixed presentation of the ordinal α, which in turn may require an
oracle to compute that presentation, as not all countable ordinals have computable
presentations. One may fold this oracle into the set S, making it available to the
functional in order to work with a single presentation of α and thus to define the α-th
jump uniformly on all subsets of ω. The upshot is that

ΦS⊕(S⊕X)(α) ∶ ω → Q

The author was partially supported by grant # DMS – 1362206 from the National Science
Foundation by grant # 581896 from the Simons Foundation, and by several grants from the PSC-
CUNY Research Award Program. This work was initiated at a workshop held at the Schloß Dagstuhl
in February 2017, where Vasco Brattka aided its development with useful conversations.
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is required to be a total function, outputting a sequence of rational numbers q0, q1, . . .
that converges effectively to the value f(x). This sequence may depend on the choice
of the input sequence X, but its limit f(x) must depend only on the limit x of the
input sequence.

It is well known that, for each fixed α and for each ε > 0, the α-th jump A(α) (again
using a fixed S-computable presentation of α) satisfies A(α) ≤T S ⊕ ∅(α) ⊕ A for all
A ⊆ ω outside a set of measure 0. The reduction is not uniform, but it is arbitrarily
close to being so: there is an S-computable function h ∶ ω → ω such that, for every
rational ε > 0,

µ({A ⊆ ω ∶ ΥS⊕∅(α)⊕A
ε ≠ A(α)}) < ε,

where Υε is the h(ε)-th Turing functional Φh(ε).
The goal of this presentation is to use this near-uniformity of the jump operator

to present a proof of Lusin’s Theorem. The basic idea is simple: given indices for a
function ΦS⊕(S⊕X)(α) computing a Borel-measurable f ∶ R → R, we wish to produce
a Turing functional Θ such that ΘS(α)⊕X computes a function g which instantiates
Lusin’s Theorem for the given f . The idea is to use Υε to compute (S ⊕X)(α) from
Θ’s oracle, and then to run the computation of Φ with the oracle (S ⊕X)(α). For all
but ε-many inputs X, this will indeed output a Cauchy sequence converging to the
correct value. The challenge is to ensure that, on the “bad” inputs, the computation
does not go too far astray: if X and X̃ converge to the same limit x, but one or
both are bad inputs, we need ΘSα

⊕X and ΘSα
⊕X̃ to compute Cauchy sequences that

both converge fast to the same limit. (If either one, say X, is a good input, with

X(α) = Υ∅
(α)
⊕X

ε , then this limit will in fact be f(x), where x is the limit of X. If not,
then this is an x for which we allow g(x) ≠ f(x), but we must still get the same value
g(x) from every input sequence converging fast to x.) We intend to show that this
can be done: the key is the ability to enumerate a set of intervals, of total measure < ε,
containing all of the bad inputs. The resulting g will then be continuous, of course,
so will prove Lusin’s Theorem. Moreover, we will examine the extent to which Θ and
its oracle set arise uniformly from the given S, α, and Φ.

The speaker is a computable structure theorist by trade, making his first real foray
into computable analysis, and will be grateful for any references or suggestions about
ways to improve the proof he presents.
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puter Science, Graduate Center, City University of New York, USA.
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We revisit the question of how to effectivize the notion of local compactness. A preprint
is available as [4]. There have been previous studies of effective local compactness ([6, 5, 2]),
albeit restricted to computable Polish spaces. We compare the definitions and show that they
are equivalent. There are some subtleties involved, which could be interpreted as demonstrating
that the previous definitions were (even for computable Polish spaces) prima facie too restrictive
(as for some examples establishing their effective local compactness would be more work than
it should be).

For non-Hausdorff spaces, there are several competing (and non-equivalent) definitions of
local compactness. We will effective the existence of a compact local neighborhood basis for our
purposes:

Definition 1. We call a represented space X effectively locally compact, if the map

CompactBase :⊆ X×O(X) ⇒ O(X)×K(X)

with dom(CompactBase) = {(x, U) | x ∈ U} and (V,K) ∈ CompactBase(x, U) iff x ∈ V ⊆ K ⊆
U is computable.

In countably-based spaces, we can ask for a specific structure that witnesses effective local
compactness. Manipulating this structure will be how we prove further results.

Definition 2. Let an effective relatively compact system (ercs) of a represented space be a
triple ((Un)n∈N, (Bn)n∈N, R) where

1. (Un ∈ O(X))n∈N is a computable sequence of open sets;

2. (Bn ∈ K(N))n∈N is a computable sequence of compact sets;

3. and R ⊆ N×N is a computably enumerable relation such that (m,n) ∈ R implies Um ⊆ Bn;

such that for any open set U ∈ O(X) it holds that:

U =
⋃

{n|U⊇Bn}

⋃
{m|(m,n)∈R}

Um

The idea is that R codes a formal containment relation between the enumerated open and
compact sets. We shall write Un � Bm for (n,m) ∈ R.

We briefly explore how admitting an ercs, being compact, and being computably compact
are related:

Proposition 3. Let X admit an ercs and be compact. Then X is computably compact.



2 Effective local compactness

If a space admits an ercs and is computably Hausdorff, it is already computably metrizable.
This follows very directly from Schröder’s effective metrization theorem [1]. The latter states
that computably regular effectively countably-based spaces are computably metrizable. Their
formulation of being computably regular actually takes the very same form as the definition
of ercs, except that closed sets are used in the place of compact sets. Since being computably
Hausdorff suffices to translate from compact sets to closed sets, it follows that a computably
Hausdorff space admitting an ercs is already computably regular.

In computable metric spaces, we can be more specific regarding how the sets Bn in ercs look
like; namely, we can demand that the compact sets be closed balls:

Proposition 4. Let (X, d) be a computable metric space. Then the following are equivalent:

1. X admits an ercs.

2. The map CompactBall : X ⇒ (N × K(X)) where (n,K) ∈ CompactBall(x) iff K =
B(x, 2−n) is well-defined and computable.

Corollary 5. Every computably compact computable metric space admits an ercs.

As an application of the machinery of effective local compactness. We study the hyperspace
(A ∧ V)(X) of sets given as both closed and overt. In the language of Weihrauch, this is the
full information representation of the closed sets. In constructive mathematics, the computable
elements of (A ∧ V)(X) are often called located.

Our main result is that whenever X admits an ercs, then (A ∧ V)(X) is computably com-
pact and computably metrizable. This generalizes a result from [3] for computably compact
computable metric spaces.
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(Abstract)

A real number is called c.a. (computably approximable) if it is the limit of a computable
sequence of rational numbers. To compare the (non-)computability of the c.a. reals, one possible
way is to check how quickly they can be approximated by the computable sequences of rational
numbers. Solovay [7] introduced a reducibility notion (so called Solovay reducibility) by a direct
comparison of the speeds of convergence of the increasing computable sequences when he investi-
gated the relative randomness of the c.e. real numbers. We call a real c.e. (computably enumerable)
if it is the limit of an increasing computable sequences of rational numbers. A c.e. real x is called
Solovay reducible to another c.e. real number y (denoted by x ≤0

S y) if there are two computable
sequences of rational numbers (xs) and (ys) increasingly converging to x and y, respectively, and
a constant c such that

(x− xs) ≤ c · (y − ys) (1)

for all natural numbers s.
Randomness reflects a kind of non-computability. The Solovay reducibility classifies somehow

different levels of (non)-computability of c.e. real numbers. Solovay reducibility characterizes the
randomness of c.e reals perfectly as well: if x ≤0

S y, then K(x � n) ≤ K(y � n) +O(1), where K(α)
denotes the Kolmogorov complexity of the string α. Furthermore, a c.e. real number is random iff
it is Solovay-complete and iff it is an Ω-number (cf. [7, 2, 5]). Thus, the Solovay reduction is really
proper way of classifying the randomness (or non-computability) levels of the c.e. real numbers.

The Solovay reducibility can be extended straightforwardly to the class of all c.a. reals by
replacing the inequality (1) with the following one

|x− xs| ≤ c · |y − ys|. (2)

This works for all convergent sequences (xs) and (ys). However, this extended reducibility doesn’t
match the intuition of computability (or randomness) classification at all. For example, for any
non-rational computable real number x, there is a d-c.e real number y such that x is not reducible
to y in the sense of (2), where d-c.e. reals are the differences of c.e. reals. Thus, the reduction
defined in this way is not even transitive, because x is reducible to any rational number z and z is
also reducible to the d-c.e. real number y.

A slightly modified version of Solovay reduction is proposed by Zheng and Rettinger in [9] by
replacing the inequality (2) with following condition

|x− xs| ≤ c ·
(
|y − ys|+ 2−s

)
. (3)
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We denote this reduction by x ≤1
S y. This definition coincides with the original Solovay reduction

on the c.e. real numbers and works perfectly well on the class of d-c.e. real numbers. For example,
it is shown in [8] that a real number x is d-c.e. if and only if it is reducible to a random c.e. number
in this sense. The condition (3) requires essentially that the approximation errors of |x − xs| are
bounded by a fixed linear combination of the approximation errors of |y − ys|. To replace the
“linear combination domination” by a more general “computable domination”, we introduce the
following definition.

Definition 0.1 A real number x is convergence-dominated reducible (cd-reducible, for short) to
y (denoted by x ≤cd y) if there exist a monotone total computable real function h : R → R with
h(0) = 0 and two computable sequences (xs) and (ys) of rational numbers which converges to x
and y, respectively, such that

∀s ∈ N(|x− xs| ≤ h(|y − ys|) + 2−s). (4)

The cd-reduction is very closely related to the class or divergence bounded computable (d.b.c in
short) reals, where a real number x is called d.b.c if there is a computable sequence (xs) of rational
numbers which converges to x and a computable function h such that, for any n, the number of
non-overlapping index pair (i, j) with the condition |xi − xj | ≥ 2−n is bounded by h(n). We will
show that, a real number is d.b.c if and only if it is cd-reducible to a c.e. random real. That is,

Theorem 0.2 A computably approximable real number is d.b.c. iff it is cd-reducible to a c.e.
random real number.
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On maximal Co-Polish Spaces
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Co-Polish spaces play an important role in Type Two Complexity Theory. They allow
for “Simple Complexity Theory”. This means that one can measure time complexity
for functions on Co-Polish spaces in terms of a discrete (rather than a continuous)
parameter on the input and the desired output precision. Note that for general spaces,
e.g. for non-locally-compact metric spaces like C(R,R), an indiscrete parameter on the
input is necessary, as seen in the approach by A. Kawamura and S. Cook (see [3]).

Definition 1 A topological space X is called Co-Polish, if X is the direct limit of an
increasing sequence of compact metrisable subspaces.

Basic examples of Co-Polish spaces are separable locally compact metric spaces. The
space of analytic functions on [0; 1] yields an example of a Co-Polish space that is not
metrisable (cf. [4]). The name “Co-Polish” is motivated by the fact that Co-Polish
spaces are exactly those regular qcb-spaces for which the lattice of opens endowed with
the Scott topology is quasi-Polish in the sense of M. de Brecht (cf. [1]). Moreover, Co-
Polish spaces are characterised as those Hausdorff qcb-spaces that have an admissible
representation with a locally compact domain (see [5]).

Maximal Co-Polish spaces

We call a Co-Polish space S maximal, if any Co-Polish space X embeds into S as a closed
subspace. Our main result states that there are indeed maximal Co-Polish spaces.

Theorem 2 There exists a maximal Co-Polish space.

It turns out that there is a plethora of non-homeomorphic maximal Co-Polish spaces.
Indeed, if S is a maximal Co-Polish space and Y is any Co-Polish space, then both
the product S × Y and the coproduct S ⊕ Y are maximal Co-Polish spaces. As a
concrete example we consider the Hilbert space `>2 equipped with the sequentialisation
of the weak∗-topology, which is coarser than the usual norm topology on `2. On the
other hand, the Co-Polish space of polynomials is not maximal. Since forming closed
subspaces preserves Co-Polishness, we obtain:

Corollary 3 A space is Co-Polish if, and only if, it is homeomorphic to a closed
subspace of `>2 .



From Proposition 8 in [2] we conclude that overt choice on Co-Polish spaces has
a maximum in the continuous Weihrauch lattice. Remember that overt choice on a
represented space X is the problem of finding a point in a non-empty closed subset of
X given by positive information.

Corollary 4 For any Co-Polish space X, overt choice on X is continuously Weihrauch
reducible to overt choice on `>2 .

A tentative definition of a notion of a computable Co-Polish space

We now apply Corollary 3 to define a notion of a computable Co-Polish space. The
Co-Polish Hilbert space `>2 is known to be the qcb-dual of the Polish Hilbert space
`2. So we can construct from the standard Cauchy representation for `2 a natural
effectively admissible representation for `>2 , namely by co-restricting the function space
representation for C(`2,R) to the subspace of all linear continuous functions f : `2 → R.

Definition 5 A represented Co-Polish space X is computable, if there is an embedding
e : X ↪→ `>2 such that e and its inverse are computable and e[X] is a co-recursively closed
subset of `>2 with a computable dense subsequence.

In the talk I will discuss the properties of this notion. For example, computable
Co-Polish spaces are closed under binary product. If X is a computable Co-Polish
space then the lattice of opens O(X) equipped with the Scott topology is a computable
quasi-Polish space in the sense of [2].
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Figure 1: F : ⊆ NN → NN is
a realizer of f : X→ Y

Computable analysis makes continuous structures accessi-
ble to computation on digital computers by encoding their ele-
ments over Baire-space. Thus the central objects in computable
analysis are representations: A representation for a space X is a
partial surjective mapping from the Baire space to X, i.e., some
δ : ⊆ NN → X [KW85]. A pair X = (X, δX) of a space and its
representation is called a represented space and an element ϕ
of Baire space is called name of x ∈ X if δ(ϕ) = x.

The computability and topological structure of Baire space
can be pushed forward through a representation. For instance
one may say that a sequence (xn)n∈N of elements of a repre-
sented space converges to another element x, i.e., limxn = x if
there is a convergent sequence of names (ϕn)n∈N ⊆ NN such that each ϕn is a name for xn
and the limit of the sequence of names is a name of x. A function between represented spaces
is called sequentially continuous if it preserves this notion of a limit, i.e., if limxn = x implies
that lim f(xn) = f(x). A similar but in general slightly stronger notion of continuity is that
of continuous realizability. A partial operator on Baire-space is said to realize a function
f : X → Y between represented spaces if it takes names of x to names of f(x) (compare
fig. 1). It is always true that a continuous realizable function is sequentially continuous, the
opposite direction may fail in general but holds if the involved spaces are admissible [Sch03].

Many of the spaces that appear in applications come with additional structure. For
instance, it is often the case that the space one wants to compute on comes with a metric. In
this case there is notions of a metric limit and metric continuity is commonly defined by the
ε-δ property. In this case one may want to pick a representation that reproduces these notions.
Metric spaces have been considered in computable analysis, e.g., by Weihrauch [Wei93] and
in particular in the case where (M,d) is a metric space and (rn)n∈N is a designated dense

metric spaces represented spaces

sequentially
continuous

non-constructive

��

constructive +3 sequentially
continuousconstructive

ks
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constructive
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Figure 2: Implications between different notions of continuity on metric spaces
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sequence, it is well known that

δC(ϕ) = x ⇐⇒ ∀n, d(x, rϕ(n)) ≤ 2−n.

defines a representation δC of M that is known to be appropriate in the sense that the metric
convergence relation coincides with the one introduced above.

We formalized the proofs of equivalences between the different notions of continuity using
and extending the coqrep library for computable analysis in coq [Ste18]. We formally proved
that sequential continuity on a metric space is equivalent to sequential continuity on the
corresponding represented space, that ε-δ-continuity is equivalent to the existence of a con-
tinuous realizer and that sequential continuity on a represented space implies the existence of
a continuous realizer. A proof that ε-δ-continuity implies sequential continuity can be found
in the standard library such that we obtain all possible implications (compare fig. 2). The
proofs have been kept as constructive as possible such that computational content can be
extracted. Since the definition of a metric space relies on the axiomatic reals, only one of the
implications is fully constructive, the others are constructive over the background theory of
real numbers and do not rely on the axioms of the real numbers in an essential way. Some
implications additionally need countable choice and functional extensionality.

While the results are fairly basic, most of the proofs are straightforward, and the use of
the computational content is limited, they are important building stones for further work with
metric spaces in the coqrep library. The original motivation for this work was to generalize
previous work about isomorphy and discontinuity of spaces of subsets of represented spaces
[ST19] from natural numbers to metric spaces. They also provide a basis for a possible future
formalization of the computable Weierstraß approximation theorem [PEC75].
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