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Complexity and Coding Theory of Hilbert Spaces

Fact

Every infinite-dimensional separable Hilbert spaces are isomorphic.

Example

L2 is the space of square-integrable functions f : [0, 1]→ C equipped with
the inner product

〈f , g〉 :=

∫ 1

0
f (x)g(x)dx .

Example

{e2πkix}k∈Z is an orthonormal basis of L2.
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Definition

η : N→ N is the entropy of space X if for every n ∈ N, X can be covered
by 2η(n) closed balls of radius 2−n, but not by 2η(n)−1 closed balls.

Example

The unit interval [0, 1] has the entropy η(n) = n.

Example (Steinberg, 2017)

Lip1([0, 1], [0, 1]) has the entropy η(n) = 2O(n).
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Definition

µ : N→ N is a modulus of continuity of f : (X , d)→ (Y , e) if

∀n ∈ N ∀a, b ∈ X d(a, b) ≤ 2−µ(n) implies e(f (a), f (b)) ≤ 2−n

Dyadic Representation: {0, 1}ω � [0, 1]

bin(a0)bin(a1)bin(a2) · · · 7→ lim
n→∞

an
2n

Signed Binary Representation: {0, 1}ω � [0, 1]

bin(a0)bin(a1)bin(a2) · · · 7→
∞∑
n=0

an
2n

ai ∈ {−1, 0, 1}
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Dyadic Representation: {0, 1}ω � [0, 1] ; modulus Θ(n2)

bin(a0)bin(a1)bin(a2) · · · 7→ lim
n→∞

an
2n

Signed Binary Representation: {0, 1}ω � [0, 1] ; modulus Θ(n)

bin(a0)bin(a1)bin(a2) · · · 7→
∞∑
n=0

an
2n

ai ∈ {−1, 0, 1}

Steinberg’s Lemma (2016)

For a surjection f : X → Y and its modulus µ,

∀n ηX (n) ≤ ηY (µ(n))

where ηX and ηY being the entropy of X and Y , respectively.

Sometimes we want to find f with (asympotitically) small µ.
This lemma establishes a lower bound of µ.
Signed binary representation is optimal.
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Weihrauch-style Representation

A partial surjection {0, 1}ω � X

Kawamura-style Representation (2012)

A partial surjection ({0, 1}∗ → {0, 1}∗) � X

Our-style Representation

A partial surjection ({0, 1}∗ → {0, 1}) � X with metric d on domain

d(ψ,ϕ) := 2−min{|w |:ψ(w)6=ϕ(w)}

ψ and ϕ are close iff they agree on all w ∈ {0, 1}∗ up to some length.
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Standard Representation of Lip1([0, 1], [0, 1])

({0, 1}∗ → {0, 1}) � Lip1([0, 1], [0, 1])

ϕ 7→ f iff ϕ(0n1j0bin(A)) = jth bit in the binary encoding of f (A/2n)
approximated to precision 2−n

Lip1([0, 1], [0, 1]) is compact according to Arzela-Ascoli

The standard representation has a linear modulus.

n and j are encoded in unary and A is encoded in binary.

This modulus is (asymptotically) optimal by Steinberg’s lemma since
both ({0, 1}∗ → {0, 1}) and Lip1([0, 1], [0, 1]) have exponential
entropy.
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Standard Representation of Lip1([0, 1], [0, 1])

({0, 1}∗ → {0, 1}) � Lip1([0, 1], [0, 1])

ϕ 7→ f iff ϕ(0n1j0bin(A)) = jth bit in the binary encoding of f (A/2n)
approximated to precision 2−n

Use of ({0, 1}∗ → {0, 1}) instead of {0, 1}∗ → {0, 1}∗ eliminates the
need for second-order complexity.

Application functional (f , x) 7→ f (x) is polytime computable with
respect to standard representation. (Kawamura, 2012)

A representation δ of Lip1([0, 1], [0, 1]) is polytime reducible to
standard representation iff it makes application functional polytime
computable. (Kawamura, 2012)
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Definition

L21 is the space of functions f : [0, 1]→ C such that

‖f ‖ ≤ 1 ∧ ∀ε > 0 ‖τεf − f ‖ ≤ ε

where ‖f ‖ is the norm ‖f ‖ :=
√∫ 1

0 f (x)f (x)dx

and τ is the cyclic shift (τεf )(x) := f (x + ε mod 1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L21 is compact according to Fréchet-Kolmogorov
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Piecewise Representation of L2
1

({0, 1}∗ → {0, 1}) � L21
ϕ 7→ f iff ϕ(0n1j0bin(A)) = jth bit in the binary encoding of

2n ·
∫ (A+1)/2n

A/2n f approximated up to precision 2−n

Similar representations have been used for computability
investigations.

L21 has entropy η(n) = 2O(n) (Steinberg, 2016)

({0, 1}∗ → {0, 1}) has entropy η(n) = 2O(n).

Piecewise representation has linear modulus and this is optimal.
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Theorem

Under piecewise representation, the functional f 7→
∫ 1
0 f is not polytime

but exptime computable.
Proof. Because exponentially many intervals cannot be accessed in
polytime. (Made formal by perturbation argument.)

Conjecture

Under piecewise representation, the pointwise operator (f , g) 7→
√
f · g is

polytime computable.
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Let f ∈ L21.

For each interval, we can calculate the average by integration.

Not closed under piecewise constant approximation f ∈ L21 ; f̃ ∈ L21.

Closed under piecewise linear approximation f ∈ L21 ⇒ f̂ ∈ L21.
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Definition

`21 is the space of sequences (zK )K∈Z ⊆ C such that√∑
K

|zK |2 ≤ 1 ∧
√∑

K

|2πiKzK |2 ≤ 1.

Lemma

`21 is isometric to L21.
Proof. By Parseval’s identity and some additional arguments.

Fourier Coefficient Representation

({0, 1}∗ → {0, 1}) � `21

ϕ 7→ (zK )K∈Z iff ϕ(0n1j0bin(K )) = jth bit in the binary encoding of zK
approximated up to precision 2−n

Since `21 can be isometrically identified with L21, a representation of `21
is also a representation of L21 and vice versa.
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Fourier Coefficient Representation

({0, 1}∗ → {0, 1}) � `21

ϕ 7→ (zK )K∈Z iff ϕ(0n1j0bin(K )) = jth bit in the binary encoding of zK
approximated up to precision 2−n

n and j encoded in unaryy; K encoded in binary

Fourier coefficient representation has linear modulus and this is
optimal by Steinberg’s lemma.

Observation

In Fourier representation, the functional f 7→
∫ 1
0 f is polytime computable

by directly reading it off from the encoding.

A Characterization of Fourier Coefficient Representation

A representation δ is polytime reducible to Fourier coefficient
representation iff δ makes polytime computable the functional
(f , bin(K )) 7→ K -th Fourier coefficient.
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Fourier Coefficient Representation

({0, 1}∗ → {0, 1}) � `21

ϕ 7→ (zK )K∈Z iff ϕ(0n1j0bin(K )) = jth bit in the binary encoding of zK
approximated up to precision 2−n

Conjecture

The functional f 7→
∫ 1/3
0 f is not polytime but exptime computable under

Fourier coefficient representation.

Conjecture

The functional (f , g) 7→
∫ 1
0 f (x)g(x)dx , the 0th Fourier coefficient of

f · g , is not polytime computable but exptime computable under Fourier
coefficient representation. (Can be computed by convolution)
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Piecewise Representation of L2
1

({0, 1}∗ → {0, 1}) � L21
ϕ 7→ f iff ϕ(0n1j0bin(A)) = jth bit in the binary encoding of

2n ·
∫ (A+1)/2n

A/2n f approximated up to precision 2−n

Fourier Coefficient Representation

({0, 1}∗ → {0, 1}) � `21

ϕ 7→ (zK )K∈Z iff ϕ(0n1j0bin(K )) = jth bit in the binary encoding of zK
approximated up to precision 2−n

Conjecture

Piecewise Repr Fourier Coef Repr

f 7→
∫ 1
0 f Not polytime Polytime

(f , unary(n)) 7→ 2n ·
∫ 2−n

0 f Polytime Not polytime

Therefore the two representations are not polytime convertible.
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Summary

L21 and piecewise representation.

`21 and Fourier Coefficient representation.

The two are not polytime equivalent.

One needs to pick one depending on the purpose.

Future Work

With respect to the basis {e2πkix}k∈Z of L21, we get Fourier
coefficients.

What if we use another orthonormal basis?

Is there a functional that characterizes the piecewise representation?

Combining representations makes more functionals polytime
computable, but may destroy closure under operations.
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