Computability and adjunctions of Euclidean spaces

Matea Čelar and Zvonko Iljazović

 $\label{eq:continuous} \mbox{University of Zagreb} \\ \mbox{Faculty of Science, Department of Mathematics} \\$

9th September 2020

Computable topological spaces

Computable topological space is a triple $(X, \mathcal{T}, (I_i))$ where

- \bullet (X, \mathcal{T}) is a topological space
- $\{I_i \mid i \in \mathbb{N}\}$ is a base for \mathcal{T}
- ullet there exist computably enumerable sets ${\mathcal C}$ and ${\mathcal D}$ such that:

Computable topological spaces

We denote the finite unions of basis elements I_i by

$$J_j = \bigcup_{i \in [j]} I_i.$$

Here $j \mapsto [j]$ is a function $\mathbb{N} \to \mathcal{P}(\mathbb{N})$ such that the set $\{(i,j) \mid i \in [j]\} \subseteq \mathbb{N}^2$ is computable and there exists a computable function $\phi : \mathbb{N} \to \mathbb{N}$ such that $i \leq \phi(j)$ for each $i \in [j]$.

There exist c.e. sets $C, D \subseteq \mathbb{N}^2$ such that

- $(i,j) \in C$ implies $J_i \subseteq J_j$;
- $(i,j) \in D$ implies $J_i \cap J_j \neq \emptyset$.

Computable and semicomputable sets

Let S be a set in a computable topological space $(X, \mathcal{T}, (I_i))$.

• S is **computably enumerable** if it is closed and

$$\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$$

is c.e.

• S is **semicomputable** if it is compact and

$$\{j \in \mathbb{N} \mid S \subseteq J_j\}$$

is c.e.

ullet S is **computable** if S is semicomputable and computably enumerable.

Local computable enumerability

• A is **computably enumerable up to** B if there exists c.e. set $\Omega \subseteq \mathbb{N}$ such that

$$I_i \cap A \neq \emptyset \quad \Rightarrow \quad i \in \Omega$$

and

$$i \in \Omega \quad \Rightarrow \quad I_i \cap B \neq \emptyset.$$

- S is computably enumerable at x if there exists a neighborhood U of x in S such that U is computably enumerable up to S.
- S is **locally computably enumerable** if S is computably enumerable at every point $x \in S$.

Local computable enumerability

- ullet S is computably enumerable iff S is computably enumerable up to S
- If A_i is computably enumerable up to B_i for each $i=1,\ldots,n$, then $A_1\cup\cdots\cup A_n$ is computably enumerable up to $B_1\cup\cdots\cup B_n$.
- A compact set is computably enumerable iff it is locally computably enumerable

Computable type

General question:

Under which (topological) conditions does the implication

 $S \ semicomputable \Rightarrow S \ computable$

hold for a set S in a computable topological space?

S semicomputable and $S \cong A \implies S$ computable

Topological space A has **computable type** if the implication above holds whenever S is homeomorphic to A.

Local computable enumerability and computable type

The following implications are equivalent:

$$S$$
 semicomputable \Rightarrow S computable, (1)

$$S$$
 semicomputable \Rightarrow S computably enumerable, (2)

$$S$$
 semicomputable \Rightarrow S locally computably enumerable. (3)

(3) motivates a more *local approach* to computable type – it is sufficient to study implications of the form

S semicomputable and
$$x \in S$$
 \Rightarrow S c.e. at x

Theorem (Iljazović and Sušić, 2018, [4])

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and let S be semicomputable set in this space and let $x \in S$. Suppose there exists a neighborhood of x in S which is homeomorphic to some \mathbb{R}^n . Then S is c.e. at x.

Theorem (Iljazović and Sušić, 2018, [4])

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and let S be a semicomputable set in this space which is, as a subspace of (X, \mathcal{T}) , a manifold. Then S is a computable set in $(X, \mathcal{T}, (I_i))$.

Topological manifolds have computable type

Topological manifolds have computable type

Adjunctions of manifolds?

Adjunction spaces

Let X and Y be topological spaces, let A be a subspace of X and let $f:A\to Y$ be a continuous function. Let $X\sqcup Y$ be the disjoint union of X and Y and let $\imath_X:X\to X\sqcup Y$ and $\imath_Y:Y\to X\sqcup Y$ be the cannonical inclusion maps. Let \sim be an equivalence relation on $X\sqcup Y$ generated by

$$i_X(a) \sim i_Y(f(a)), \quad \forall a \in A.$$

We denote the quotient space $X \sqcup Y /_{\sim}$ by $X \cup_f Y$ and we call it **adjunction space** obtained by adjoining X onto Y by way of f.

(In this talk, we consider only the case where $f: A \rightarrow Y$ is an embedding.)

Proposition

Let $n \geq 2$ and let A be a closed subset of $\mathbb{R}^{n-1} \times \{0\}$ such that $(0,\ldots,0) \in A$. Let Y be a locally compact topological space and let $\gamma:A \to Y$ be an embedding such that $\gamma(A)$ is closed in Y. Suppose $(X,\mathcal{T},(I_i))$ is a computable topological space and $f:\mathbb{R}^n \cup_{\gamma} Y \to X$ is an embedding such that $f(\mathbb{R}^n \cup_{\gamma} Y)$ is an open subset of a semicomputable set S. Then the set $f([-1,1]^n \cup_{\gamma} \emptyset)$ is c.e. up to S.

Theorem

Let $m, n \in \mathbb{N}$, $m, n \geq 2$. Let A be a sufficiently thin set in an m-manifold M and let B be a sufficiently thin set in an n-manifold N. Let $\gamma: A \to B$ be a homeomorphism. Let S be a semicomputable set in a computable topological space $(X, \mathcal{T}, (I_i))$ and let $f: M \cup_{\gamma} N \to S$ be a homeomorphism. Then S is computable at x for any $x \in f(A \cup_{\gamma} B)$.

Theorem

Let $m, n \in \mathbb{N}$, $m, n \geq 2$. Let A be a sufficiently thin set in an m-manifold M and let B be a sufficiently thin set in an n-manifold N. If $\gamma: A \to B$ is a homeomorphism, then the adjunction space $M \cup_{\gamma} N$ has computable type.

Exceptions

Further research prompts

Manifolds with boundaries

Theorem

If S is an n-manifold with boundary ∂S in a computable topological space $(X, \mathcal{T}, (I_i))$ such that S and ∂S are semicomputable sets, then S is computable.

- ► How do we modify boundary conditions for spaces obtained by attaching manifolds along subsets of their boundaries?
- More general ambient spaces
 - Can we have similar results for subsets of spaces which are not necessarily effectively T₂?

References

- V. Brattka and G. Presser, *Computability on subsets of metric spaces*, Theoretical Computer Science (2003), no. 305, 43–76.
- R. Brown, *Topology and groupoids*, www.groupoids.org, 2006.
- Z. Iljazović, Computability of graphs, Mathematical Logic Quarterly 66 (2020), 51–64.
- Z. Iljazović and I. Sušić, *Semicomputable manifolds in computable topological spaces*, Journal of Complexity **45** (2018), 83–114.
- K. Weihrauch and T. Grubba, *Elementary computable topology*, Journal of Universal Computer Science **15** (2009), no. 6, 1381–1422.