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Abstract

Effective and resource-bounded dimensions were defined by Lutz in [5]
and [4] and have proven to be useful and meaningful for quantitative anal-
ysis in the contexts of algorithmic randomness, computational complexity
and fractal geometry (see the surveys [1, 6, 2, 12] and all the references
in them).

The point-to-set principle of J. Lutz and N. Lutz [8] fully character-
izes Hausdorff and packing dimensions in terms of effective dimensions in
the Euclidean space, enabling effective dimensions to be used to answer
open questions about fractal geometry, with already an interesting list
of geometric measure theory results (see [3, 11] and more recent results
in [7, 13, 14, 15]). This characterization has been recently extended to
separable spaces [10] and to resource-bounded dimensions [9].

In this talk I will review the point-to-set principles focusing on both
the adaptability of algorithmic dimension to different separable spaces and
the importance of the oracle that achieves the characterization of classical
dimension in terms of an algorithmic dimension. For instance Stull [15]
has been able to improve the Marstrand projection theorem by analyzing
the optimality of the oracles in the point-to-set principles.
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