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Abstract

E�ective and resource-bounded dimensions were de�ned by Lutz in [5]
and [4] and have proven to be useful and meaningful for quantitative anal-
ysis in the contexts of algorithmic randomness, computational complexity
and fractal geometry (see the surveys [1, 6, 2, 12] and all the references
in them).

The point-to-set principle of J. Lutz and N. Lutz [8] fully character-
izes Hausdor� and packing dimensions in terms of e�ective dimensions in
the Euclidean space, enabling e�ective dimensions to be used to answer
open questions about fractal geometry, with already an interesting list
of geometric measure theory results (see [3, 11] and more recent results
in [7, 13, 14, 15]). This characterization has been recently extended to
separable spaces [10] and to resource-bounded dimensions [9].

In this talk I will review the point-to-set principles focusing on both
the adaptability of algorithmic dimension to di�erent separable spaces and
the importance of the oracle that achieves the characterization of classical
dimension in terms of an algorithmic dimension. For instance Stull [15]
has been able to improve the Marstrand projection theorem by analyzing
the optimality of the oracles in the point-to-set principles.
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