Computability of One-Point Metric Bases CCA 2024

Konrad Burnik *[⋆]* Zvonko Iljazović *⋆⋆* Lucija Validžić *⋆⋆*

*[⋆]*Xebia Data, Netherlands

*⋆⋆*University of Zagreb, Croatia

Swansea, Wales, UK 16 July 2024

Outline

- 3 [Results for some compact spaces](#page-17-0)
	- [Results for some non-compact spaces](#page-40-0)

[Summary](#page-45-0)

[Metric Basis](#page-2-0)

- 2 [Computable Metric Spaces](#page-11-0)
- [Results for some compact spaces](#page-17-0)
- [Results for some non-compact spaces](#page-40-0)

Metric Basis - Motivation

Metric Basis - Motivation

Metric Basis - Motivation

Note

It can be shown that the same property holds for the endpoint x_1 .

Metric Basis - Definition

Definition (Melter and Tomescu [\[2\]](#page-47-0))

Suppose (X, d) is a metric space, let $S \subseteq X$ be a non-empty set such that for all $x, y \in X$ the following implication holds:

if $d(s, x) = d(s, y)$ for each $s \in S$, then $x = y$.

Then we say that S is a **metric basis** for (X*,* d).

Metric Basis - Definition

Definition (Melter and Tomescu [\[2\]](#page-47-0))

Suppose (X, d) is a metric space, let $S \subseteq X$ be a non-empty set such that for all $x, y \in X$ the following implication holds:

if $d(s, x) = d(s, y)$ for each $s \in S$, then $x = y$.

Then we say that S is a **metric basis** for (X*,* d).

Definition

Let (X, d) be a metric space. We say that a point $x_0 \in X$ is a one-point metric basis for (X, d) if $\{x_0\}$ is a metric basis for (X, d) .

Metric Basis - Definition

Definition (Melter and Tomescu [\[2\]](#page-47-0))

Suppose (X, d) is a metric space, let $S \subseteq X$ be a non-empty set such that for all $x, y \in X$ the following implication holds:

if $d(s, x) = d(s, y)$ for each $s \in S$, then $x = y$.

Then we say that S is a **metric basis** for (X*,* d).

Definition

Let (X, d) be a metric space. We say that a point $x_0 \in X$ is a one-point metric basis for (X, d) if $\{x_0\}$ is a metric basis for (X, d) .

Note

Any subset of X containing a metric basis for (X*,* d) is a metric basis for (X, d) .

Burnik K., Iljazović Z. and Validžić L. [Computability of One-Point Metric Bases](#page-0-0) Swansea, Wales, UK 16 July 2024 6/37

Main question

Question

Let (X, d, α) be a computable metric space and $x_0 \in X$ a metric basis for (X, d) . Under which conditions is x_0 computable in (X, d, α) ?

Note

We study this question for some computable metric spaces that are:

- compact and connected
- compact and disconnected with finitely many components
- non-compact and connected

Some know computability results for arcs

A connection between the computability of an arc and the computability of its endpoints has been very well studied.

- Miller has shown in [\[3\]](#page-47-1) that there exists a computable arc in \mathbb{R}^2 with noncomputable endpoints.
- \bullet However, a computable arc in $\mathbb R$ has to be of the form [a, b], where a and *b* are computable real numbers.
- On the other hand, it is known that if endpoints of a semicomputable arc are computable, then the arc is computable $([1, 4])$ $([1, 4])$ $([1, 4])$ $([1, 4])$.

[Metric Basis](#page-2-0)

[Results for some compact spaces](#page-17-0)

[Results for some non-compact spaces](#page-40-0)

Computable Metric Spaces - Definitions

Definition

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space and $\alpha : \mathbb{N} \to X$ is a sequence with a dense image in X such that the function $\mathbb{N}^2 \to \mathbb{R}$

$$
(i,j)\mapsto d(\alpha_i,\alpha_j)
$$

is computable. We call the points $\alpha_0, \alpha_1, \ldots$ **rational points** or **special points**.

Computable Metric Spaces - Definitions

Definition

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space and $\alpha : \mathbb{N} \to X$ is a sequence with a dense image in X such that the function $\mathbb{N}^2 \to \mathbb{R}$

$$
(i,j)\mapsto d(\alpha_i,\alpha_j)
$$

is computable. We call the points $\alpha_0, \alpha_1, \ldots$ **rational points** or **special points**.

Definition

A *point* $x \in X$ is **computable** in (X, d, α) if there is a computable function $f : \mathbb{N} \longrightarrow \mathbb{N}$ such that

$$
d(x, \alpha_{f(k)}) < 2^{-k}
$$

for all $k \in \mathbb{N}$.

Computable Metric Spaces - Definitions (contd.)

Definition

- A set *I* is a **rational ball** if $I = B(\lambda, \rho)$ where λ is a rational point and $\rho \in \mathbb{Q}^+$.
- We denote by (I_k) and (I_k) some fixed effective enumerations of open and closed rational balls respectively.

Definition

- A finite union of open rational balls is called **rational open set**.
- \bullet Denote by (J_i) some fixed effective enumeration of rational open sets.

Definition

Let (X, d, α) be a computable metric space. Let $S \subseteq X$ be closed.

1 S is **computably enumerable** in (X, d, α) i.e. the set

 $\{i \in \mathbb{N} : S \cap I_i \neq \emptyset\}$

is recursively enumerable.

2 S is a **co-computably enumerable set** in (X, d, α) if there exists a c.e. $\Omega \subseteq \mathbb{N}$ such that

$$
X\setminus S=\bigcup_{i\in\Omega}I_i
$$

³ S is **semi-computable** if S is compact and

 $\{j \in \mathbb{N} \mid S \subseteq J_i\}$

1₇ 37

is recursively enumerable.

⁴ S is **computable** if S is semi-computable and computably **enumerable.**
Burnik K., Iliazović Z. and Validžić L.

Burnik K., Iljazović Z. and Validžić L. [Computability of One-Point Metric Bases](#page-0-0) Swansea, Wales, UK 16 July 2024 12 / 37

Effective Compactness

Definition

A metric space (X, d) is said to be **effectively compact** if (X, d) is compact and there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$
X = B(\alpha_0, 2^{-k}) \cup \cdots \cup B(\alpha_{f(k)}, 2^{-k})
$$

for each $k \in \mathbb{N}$.

[Metric Basis](#page-2-0)

3 [Results for some compact spaces](#page-17-0)

[Results for some non-compact spaces](#page-40-0)

Result for connected compact spaces

Theorem

Assume that (X, d, α) is an effectively compact computable metric space such that the space (X, d) is connected. If $x_0 \in X$ is metric basis for (X, d) , then x_0 is a computable point in (X, d, α) .

Idea

Prove that $\{x_0\}$ is co-computably enumerable: find a r.e. set $\Omega \subseteq \mathbb{N}$ such that

$$
X\setminus\{x_0\}=\bigcup_{i\in\Omega}I_i.
$$

Lemma

Let (X, d) be a connected metric space. Let $\varepsilon > 0$ and U, V, W open sets in (X, d) such that $U \cup V \cup W = X$, $U \cap W = \emptyset$ and diam $V \leq \varepsilon$. If there exist $x_1 \in U$, $x_2 \in V$, $x_3 \in W$ such that $d(x_1, x_2) > 2\varepsilon$ and $d(x_2, x_3) > 2\varepsilon$, then V does not contain a point which is a metric basis of (X, d) .

Proposition

If (X*,* d) is a compact and connected metric space which has a metric basis then (X, d) is an arc.

Proposition

If (X*,* d) is a compact and connected metric space which has a metric basis then (X, d) is an arc.

Proposition

Let (X, d) be an arc. If x_0 is a metric basis for (X, d) then x_0 is an endpoint.

Proposition

If (X*,* d) is a compact and connected metric space which has a metric basis then (X, d) is an arc.

Proposition

Let (X, d) be an arc. If x_0 is a metric basis for (X, d) then x_0 is an endpoint.

Note

Hence, (X, d, α) is an effectively computable arc with endpoints a and b and the metric basis $x_0 \in \{a, b\}$. In the following, we continue the proof for $x_0 = a$. Proof for $x_0 = b$ is analogous.

Proposition

There is c.e. set $\Omega \subseteq \mathbb{N}$ such that the condition $i \in \Omega$ implies the conditions of the Lemma when applied to an effectively compact arc.

To prove $\mathsf{X}\setminus \{a\}\subseteq \bigcup_{i\in \Omega}\colon$ For a given $\mathsf{x}\not\in \{a,b\}$, and some $\varepsilon>0$, we can always find the sets J_{μ} , J_{μ} and I_i such that $a \in J_{\mu}$, $b \in J_{\mu}$ and $x \in I_i$ and that satisfy certain covering conditions similar to the ones from the Lemma, but chosen to imply $i \in \Omega$.

To prove $\bigcup_{i\in\Omega}I_i\subseteq X\setminus\{a\}\colon\, i\in\Omega$ implies conditions of the Lemma, which in turn implies that I_i does not contain a metric basis point, hence, it does not intersect a.

- We conclude that $\{a\}$ is *co-computably enumerable* in (X, d, α) .
- **•** From effective compactness of (X, d, α) it is not hard to show that ${a}$ co-computably enumerable implies that a is a computable point in (X, d, α) .

Example

Note

The effective compactness assumption cannot be removed as the following example shows.

Example

Note

The effective compactness assumption cannot be removed as the following example shows.

Example

Let *γ >* 0 be left-computable but not computable real. Consider computable metric space constructed from a segment in $\mathbb R$ with endpoints 0 and *γ*.

Note that this space is not effectively compact. Now *γ* is a metric basis of this space, but γ is not computable.

Note

Further, the claim of the Theorem does not hold for metric bases which contain more than one point.

Example

Consider *I*, the unit square $[0,1]^2$ with euclidean metric.

Here, $\{(0,0), (1,0)\}$ is a two-point metric basis for *I* and both of its points are computable.

Example

On the other hand, for *γ* ∈ ⟨0*,* 1⟩ uncomputable, we also have the following.

Here, $\{(0,0), (\gamma, 0)\}$ is a two-point metric basis for *I*, which contains a non-computable point.

Further results

Theorem

Assume that (X, d, α) is effectively compact computable metric space such that the space (X, d) has finitely many connected components. If $x_0 \in X$ is metric basis for (X, d) , then x_0 is a computable point in (X, d, α) .

Further results

Theorem

Assume that (X, d, α) is effectively compact computable metric space such that the space (X, d) has finitely many connected components. If $x_0 \in X$ is metric basis for (X, d) , then x_0 is a computable point in (X, d, α) .

The proof uses the following facts.

Proposition

Let (X*,* d) be compact and disconnected with finitely many components. If (X, d) has a one-point metric basis then (X, d) is an union of disjoint arcs.

Proposition

 (X, d, α) is effectively compact if and only if X is a computable set in (X, d, α) .

[Metric Basis](#page-2-0)

- 2 [Computable Metric Spaces](#page-11-0)
- [Results for some compact spaces](#page-17-0)
- 4 [Results for some non-compact spaces](#page-40-0)

[Summary](#page-45-0)

Definition

Let (X, d, α) be a computable metric space. We say that (X, d, α) has **effective covering property** if

$$
\{(i,j)\in\mathbb{N}^2\mid \widehat{I}_i\subseteq J_j\}
$$

is recursively enumerable.

Definition

A metric space (X, d) is a **topological ray** if (X, d) is homeomorphic to $[0, +\infty)$.

Proposition

Let (X, d) be a connected metric space which is not compact. If (X, d) has a metric basis then (X, d) is a topological ray.

Result for topological ray

Theorem

Let (X, d, α) be a computable metric space which is a topological ray and that has the effective covering property and compact closed balls. If $x_0 \in X$ is a metric basis for (X, d) then x_0 is a computable point in (X, d, α) .

Idea

Similar proof as for the arc: given the metric basis $x_0 \in X$ a new r.e. set $\Omega \subseteq \mathbb{N}$ is constructed such that $X \setminus \{x_0\} = \bigcup_{i \in \Omega} I_i$ taking the following into account:

- if x_0 is a metric basis then x_0 is an endpoint
- a semi-computability notion for closed subsets that are not compact
- the "unboundedness" of the topological ray

[Metric Basis](#page-2-0)

- 2 [Computable Metric Spaces](#page-11-0)
- [Results for some compact spaces](#page-17-0)
- [Results for some non-compact spaces](#page-40-0)

Summary

Theorem

Let (X, d, α) be a computable metric space. Let $x_0 \in X$ be a metric basis for (X*,* d).

- **1** If (X, d, α) is effectively compact and (X, d) is connected then x_0 is computable in (X, d, α) .
- 2 If (X, d, α) is effectively compact and (X, d) is disconnected with finitely many connected components then x_0 is computable in (X, d, α) .
- \bigodot If (X, d, α) is connected and has compact closed balls and the effective covering property and (X, d) is not compact then x_0 is computable in (X, d, α) .

Z. Iljazović.

Co-c.e. spheres and cells in computable metric spaces. Logical Methods in Computer Science, 7(3:05):1–21, 2011.

- R.A. Melter and I. Tomescu. Metric bases in digital geometry. Computer Vision, Graphics, and Image Processing, 25:113–121, 1984.
	- J.S. Miller. Effectiveness for embedded spheres and balls.

Electronic Notes in Theoretical Computer Science, 66:127–138, 2002.

鼂 E. Čičković, Z. Iljazović, and L. Validžić.

Chainable and circularly chainable semicomputable sets in computable topological spaces.

Archive for Mathematical Logic, 58:885–897, 2019.

Thank you for your attention!