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Metric Basis

Metric Basis - Motivation

Example
Consider a segment in R with endpoints x0 and x1.

x0 x1
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Metric Basis

Metric Basis - Motivation

Example
Consider a segment in R with endpoints x0 and x1.

x0 x1

r

x

An interesting property of x0: any point x of the segment is uniquely
determined by its distance r from an endpoint x0.

Note
It can be shown that the same property holds for the endpoint x1.
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Metric Basis

Metric Basis - Definition

Definition (Melter and Tomescu [2])
Suppose (X , d) is a metric space, let S ⊆ X be a non-empty set such that
for all x , y ∈ X the following implication holds:

if d(s, x) = d(s, y) for each s ∈ S, then x = y .

Then we say that S is a metric basis for (X , d).

Definition
Let (X , d) be a metric space. We say that a point x0 ∈ X is a one-point
metric basis for (X , d) if {x0} is a metric basis for (X , d).

Note
Any subset of X containing a metric basis for (X , d) is a metric basis for
(X , d).
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Metric Basis

Main question

Question
Let (X , d , α) be a computable metric space and x0 ∈ X a metric basis for
(X , d). Under which conditions is x0 computable in (X , d , α)?

Note
We study this question for some computable metric spaces that are:

compact and connected
compact and disconnected with finitely many components
non-compact and connected
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Metric Basis

Some know computability results for arcs

A connection between the computability of an arc and the computability
of its endpoints has been very well studied.

Miller has shown in [3] that there exists a computable arc in R2 with
noncomputable endpoints.
However, a computable arc in R has to be of the form [a, b], where a
and b are computable real numbers.
On the other hand, it is known that if endpoints of a semicomputable
arc are computable, then the arc is computable ([1, 4]).
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Computable Metric Spaces
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Computable Metric Spaces

Computable Metric Spaces - Definitions

Definition
A triple (X , d , α) is a computable metric space if (X , d) is a metric
space and α : N → X is a sequence with a dense image in X such that the
function N2 → R

(i , j) 7→ d(αi , αj)

is computable. We call the points α0, α1, . . . rational points or special
points.

Definition
A point x ∈ X is computable in (X , d , α) if there is a computable
function f : N −→ N such that

d(x , αf (k)) < 2−k

for all k ∈ N.
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Computable Metric Spaces

Computable Metric Spaces - Definitions (contd.)

Definition
A set I is a rational ball if I = B(λ, ρ) where λ is a rational point
and ρ ∈ Q+.
We denote by (Ik) and (Îk) some fixed effective enumerations of open
and closed rational balls respectively.

Definition
A finite union of open rational balls is called rational open set.
Denote by (Jj) some fixed effective enumeration of rational open sets.
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Computable Metric Spaces

Definition
Let (X , d , α) be a computable metric space. Let S ⊆ X be closed.

1 S is computably enumerable in (X , d , α) i.e. the set

{i ∈ N : S ∩ Ii ̸= ∅}

is recursively enumerable.
2 S is a co-computably enumerable set in (X , d , α) if there exists a

c.e. Ω ⊆ N such that
X \ S =

⋃
i∈Ω

Ii

3 S is semi-computable if S is compact and

{j ∈ N | S ⊆ Jj}

is recursively enumerable.
4 S is computable if S is semi-computable and computably

enumerable.
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Computable Metric Spaces

Effective Compactness

Definition
A metric space (X , d) is said to be effectively compact if (X , d) is
compact and there exists a computable function f : N → N such that

X = B(α0, 2−k) ∪ · · · ∪ B(αf (k), 2−k)

for each k ∈ N.
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Results for some compact spaces

Result for connected compact spaces

Theorem
Assume that (X , d , α) is an effectively compact computable metric space
such that the space (X , d) is connected. If x0 ∈ X is metric basis for
(X , d), then x0 is a computable point in (X , d , α).
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Results for some compact spaces

Proof (sketch)

Idea
Prove that {x0} is co-computably enumerable: find a r.e. set Ω ⊆ N such
that

X \ {x0} =
⋃
i∈Ω

Ii .
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Results for some compact spaces

Lemma

Lemma
Let (X , d) be a connected metric space. Let ε > 0 and U, V , W open
sets in (X , d) such that U ∪ V ∪ W = X, U ∩ W = ∅ and diam V < ε.

If there exist x1 ∈ U, x2 ∈ V , x3 ∈ W such that d(x1, x2) > 2ε and
d(x2, x3) > 2ε, then V does not contain a point which is a metric basis of
(X , d).
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Results for some compact spaces

Lemma

U W

V

x1 x3

x2
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Results for some compact spaces

Lemma

U W

x1 x3

V

x2
x

y2y1
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Results for some compact spaces

Proof (sketch)

Proposition
If (X , d) is a compact and connected metric space which has a metric
basis then (X , d) is an arc.

Proposition
Let (X , d) be an arc. If x0 is a metric basis for (X , d) then x0 is an
endpoint.

Note
Hence, (X , d , α) is an effectively computable arc with endpoints a and b
and the metric basis x0 ∈ {a, b}. In the following, we continue the proof
for x0 = a. Proof for x0 = b is analogous.
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Results for some compact spaces

Proof (sketch)

Proposition
There is c.e. set Ω ⊆ N such that the condition i ∈ Ω implies the
conditions of the Lemma when applied to an effectively compact arc.

To prove X \ {a} ⊆
⋃

i∈Ω: For a given x ̸∈ {a, b}, and some ε > 0, we can
always find the sets Ju, Jw and Ii such that a ∈ Ju, b ∈ Jw and x ∈ Ii and
that satisfy certain covering conditions similar to the ones from the
Lemma, but chosen to imply i ∈ Ω.

a

b

x

IiJu
Jw
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Results for some compact spaces

Proof (sketch)

To prove
⋃

i∈Ω Ii ⊆ X \ {a}: i ∈ Ω implies conditions of the Lemma, which
in turn implies that Ii does not contain a metric basis point, hence, it does
not intersect a.

a

b

Ii

Ju
Jw

λj λj′

λi

Burnik K., Iljazović Z. and Validžić L. Computability of One-Point Metric Bases Swansea, Wales, UK 16 July 2024 22 / 37



23/ 37

Results for some compact spaces

Proof (sketch)

We conclude that {a} is co-computably enumerable in (X , d , α).
From effective compactness of (X , d , α) it is not hard to show that
{a} co-computably enumerable implies that a is a computable point
in (X , d , α).
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Results for some compact spaces

Example

Note
The effective compactness assumption cannot be removed as the following
example shows.

Example
Let γ > 0 be left-computable but not computable real. Consider
computable metric space constructed from a segment in R with endpoints
0 and γ.

0 γ

Note that this space is not effectively compact. Now γ is a metric basis of
this space, but γ is not computable.
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Results for some compact spaces

Example

Note
Further, the claim of the Theorem does not hold for metric bases which
contain more than one point.
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Results for some compact spaces

Example
Consider I, the unit square [0, 1]2 with euclidean metric.

(0, 0) (1, 0)

x

Here, {(0, 0), (1, 0)} is a two-point metric basis for I and both of its points
are computable.
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Results for some compact spaces

Example
On the other hand, for γ ∈ ⟨0, 1⟩ uncomputable, we also have the
following.

(0, 0) (γ, 0)

x

Here, {(0, 0), (γ, 0)} is a two-point metric basis for I, which contains a
non-computable point.
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Results for some compact spaces

Further results

Theorem
Assume that (X , d , α) is effectively compact computable metric space such
that the space (X , d) has finitely many connected components. If x0 ∈ X
is metric basis for (X , d), then x0 is a computable point in (X , d , α).

The proof uses the following facts.

Proposition
Let (X , d) be compact and disconnected with finitely many components. If
(X , d) has a one-point metric basis then (X , d) is an union of disjoint arcs.

Proposition
(X , d , α) is effectively compact if and only if X is a computable set in
(X , d , α).
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Results for some non-compact spaces
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Results for some non-compact spaces

Definition
Let (X , d , α) be a computable metric space. We say that (X , d , α) has
effective covering property if

{(i , j) ∈ N2 | Îi ⊆ Jj}

is recursively enumerable.
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Results for some non-compact spaces

Definition
A metric space (X , d) is a topological ray if (X , d) is homeomorphic to
[0, +∞⟩.

Proposition
Let (X , d) be a connected metric space which is not compact. If (X , d)
has a metric basis then (X , d) is a topological ray.
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Results for some non-compact spaces

Result for topological ray

Theorem
Let (X , d , α) be a computable metric space which is a topological ray and
that has the effective covering property and compact closed balls. If
x0 ∈ X is a metric basis for (X , d) then x0 is a computable point in
(X , d , α).
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Results for some non-compact spaces

Proof (sketch)

Idea
Similar proof as for the arc: given the metric basis x0 ∈ X a new r.e. set
Ω ⊆ N is constructed such that X \ {x0} =

⋃
i∈Ω Ii taking the following

into account:
if x0 is a metric basis then x0 is an endpoint
a semi-computability notion for closed subsets that are not compact
the "unboundedness" of the topological ray
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Summary

Summary

Theorem
Let (X , d , α) be a computable metric space. Let x0 ∈ X be a metric basis
for (X , d).

1 If (X , d , α) is effectively compact and (X , d) is connected then x0 is
computable in (X , d , α).

2 If (X , d , α) is effectively compact and (X , d) is disconnected with
finitely many connected components then x0 is computable in
(X , d , α).

3 If (X , d , α) is connected and has compact closed balls and the
effective covering property and (X , d) is not compact then x0 is
computable in (X , d , α).
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Summary

Thank you for your attention!
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