Quotients of Weihrauch degrees

Arno Pauly and Manlio Valenti (and probably more)

Swansea University

CCA 2024, Swansea

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

How we actually got to the question

A more systematic alternative history

Constructing quotients and some algebraic properties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Calculating some quotients

▶ $h \leq_W f \sqcup g$, $h \leq_W f \times g$ and $h \leq_W f \star g$ can all be read as "If *f* and *g*, then *h*.".

- Here f ⊔ g receives either a query to f or a query to g as input, and provides a corresponding answer.
- While f × g receives a query to f and a query to g, and answers both.
- And f * g receives a query to g, and a way to compute a query to f given any corresponding answer to g, and answers both.

- ▶ $h \leq_W f \sqcup g$, $h \leq_W f \times g$ and $h \leq_W f \star g$ can all be read as "If *f* and *g*, then *h*.".
- Here *f* ⊔ *g* receives either a query to *f* or a query to *g* as input, and provides a corresponding answer.
- While f × g receives a query to f and a query to g, and answers both.
- And f * g receives a query to g, and a way to compute a query to f given any corresponding answer to g, and answers both.

- ▶ $h \leq_W f \sqcup g$, $h \leq_W f \times g$ and $h \leq_W f \star g$ can all be read as "If *f* and *g*, then *h*.".
- Here *f* ⊔ *g* receives either a query to *f* or a query to *g* as input, and provides a corresponding answer.
- While f × g receives a query to f and a query to g, and answers both.
- And f * g receives a query to g, and a way to compute a query to f given any corresponding answer to g, and answers both.

- ▶ $h \leq_W f \sqcup g$, $h \leq_W f \times g$ and $h \leq_W f \star g$ can all be read as "If *f* and *g*, then *h*.".
- Here *f* ⊔ *g* receives either a query to *f* or a query to *g* as input, and provides a corresponding answer.
- While f × g receives a query to f and a query to g, and answers both.
- And f * g receives a query to g, and a way to compute a query to f given any corresponding answer to g, and answers both.

RT₂², SRT₂² and COH

$\blacktriangleright \operatorname{RT}_2^2 \Leftrightarrow \left(\operatorname{SRT}_2^2 \land \operatorname{COH}\right)$

Brattka asked how this appears in the Weihrauch degrees.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\blacktriangleright SRT_2^2 \sqcup COH <_W RT_2^2 <_W SRT_2^2 \star COH$
- $\blacktriangleright (SRT_2^2 \times COH) \mid_W RT_2^2$

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) LPO × NON $\not\leq_W RT_2^2$

RT₂², SRT₂² and COH

 $\blacktriangleright \operatorname{RT}_2^2 \Leftrightarrow \left(\operatorname{SRT}_2^2 \land \operatorname{COH}\right)$

Brattka asked how this appears in the Weihrauch degrees.

(ロ) (同) (三) (三) (三) (○) (○)

- $\blacktriangleright \ SRT_2^2 \sqcup COH <_W RT_2^2 <_W SRT_2^2 \star COH$
- $\blacktriangleright (SRT_2^2 \times COH) \mid_W RT_2^2$

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) LPO × NON $\not\leq_W RT_2^2$

RT₂², SRT₂² and COH

- $\blacktriangleright \operatorname{RT}_2^2 \Leftrightarrow \left(\operatorname{SRT}_2^2 \land \operatorname{COH}\right)$
- Brattka asked how this appears in the Weihrauch degrees.

(日) (日) (日) (日) (日) (日) (日)

- ► $SRT_2^2 \sqcup COH <_W RT_2^2 <_W SRT_2^2 \star COH$
- $\blacktriangleright (SRT_2^2 \times COH) \mid_W RT_2^2$

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) LPO \times NON $\not\leq_W RT_2^2$

RT_2^2 , SRT_2^2 and COH

- $\blacktriangleright \operatorname{RT}_2^2 \Leftrightarrow \left(\operatorname{SRT}_2^2 \land \operatorname{COH}\right)$
- Brattka asked how this appears in the Weihrauch degrees.

(日) (日) (日) (日) (日) (日) (日)

- ► $SRT_2^2 \sqcup COH <_W RT_2^2 <_W SRT_2^2 \star COH$
- $\blacktriangleright (SRT_2^2 \times COH) \mid_W RT_2^2$

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) LPO \times NON $\not\leq_W RT_2^2$

- D₂² is "Given a Δ₂⁰-subset A ⊆ N, find an infinite set *I* such that either *I* ⊆ A or *I* ⊆ N \ A.
- CFI_{Δ⁰₂} is "Given a cofinite Δ⁰₂-subset of ℕ, find an infinite subset of it".

(日) (日) (日) (日) (日) (日) (日)

- Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) $CFI_{\Delta_2^0} \equiv_W \max_{\leq_W} \{h \mid h \times LPO \leq_W D_2^2\}$
- Question (Dzhafarov, Goh, Hirschfeldt, Patey & P) When does $\max_{\leq_W} \{h \mid h \times f \leq_W g\}$ exist?

- D₂² is "Given a Δ₂⁰-subset A ⊆ N, find an infinite set *I* such that either *I* ⊆ A or *I* ⊆ N \ A.
- CFI_{Δ⁰₂} is "Given a cofinite Δ⁰₂-subset of ℕ, find an infinite subset of it".

(日) (日) (日) (日) (日) (日) (日)

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) $CFI_{\Delta_2^0} \equiv_W \max_{\leq_W} \{h \mid h \times LPO \leq_W D_2^2\}$

Question (Dzhafarov, Goh, Hirschfeldt, Patey & P) When does $\max_{\leq_W} \{h \mid h \times f \leq_W g\}$ exist?

- D₂² is "Given a Δ₂⁰-subset A ⊆ N, find an infinite set *I* such that either *I* ⊆ A or *I* ⊆ N \ A.
- CFI_{Δ⁰₂} is "Given a cofinite Δ⁰₂-subset of ℕ, find an infinite subset of it".

(日) (日) (日) (日) (日) (日) (日)

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) $CFI_{\Delta_2^0} \equiv_W \max_{\leq_W} \{h \mid h \times LPO \leq_W D_2^2\}$

Question (Dzhafarov, Goh, Hirschfeldt, Patey & P) When does $\max_{\leq w} \{h \mid h \times f \leq_W g\}$ exist?

- D₂² is "Given a Δ₂⁰-subset A ⊆ N, find an infinite set *I* such that either *I* ⊆ A or *I* ⊆ N \ A.
- CFI_{Δ⁰₂} is "Given a cofinite Δ⁰₂-subset of ℕ, find an infinite subset of it".

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & P) $CFI_{\Delta_2^0} \equiv_W \max_{\leq_W} \{h \mid h \times LPO \leq_W D_2^2\}$

Question (Dzhafarov, Goh, Hirschfeldt, Patey & P) When does $\max_{\leq w} \{h \mid h \times f \leq_W g\}$ exist?

Returning to the problem

Theorem (Goh, P & Valenti) lim $\equiv_W \max_{\leq_W} \{h \mid h \times \widehat{ACC_N} \leq_W DS\}$

Proposition (Goh, P & Valenti) For $f \neq 0$, max_{$\leq w$} { $h \mid h \times f \leq_W g$ } exists.

• We write $g/f := \max_{\leq_W} \{h \mid h \times f \leq_W g\}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Returning to the problem

Theorem (Goh, P & Valenti) lim $\equiv_W \max_{\leq_W} \{h \mid h \times \widehat{ACC_N} \leq_W DS\}$

Proposition (Goh, P & Valenti) For $f \neq 0$, $\max_{\leq w} \{h \mid h \times f \leq_W g\}$ exists.

• We write $g/f := \max_{\leq_W} \{h \mid h \times f \leq_W g\}$.

A D F A 同 F A E F A E F A Q A

Returning to the problem

Theorem (Goh, P & Valenti) $\lim \equiv_W \max_{\leq_W} \{h \mid h \times \widehat{ACC_{\mathbb{N}}} \leq_W DS\}$

Proposition (Goh, P & Valenti) For $f \neq 0$, $\max_{\leq_W} \{h \mid h \times f \leq_W g\}$ exists.

• We write
$$g/f := \max_{\leq_W} \{h \mid h \times f \leq_W g\}$$
.

How we actually got to the question

A more systematic alternative history

Constructing quotients and some algebraic properties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Calculating some quotients

A residuated lattice is a lattice equipped with a monoidal operation \cdot such that $\max\{h \mid f \cdot h \leq g\}$ and $\max\{h \mid h \cdot f \leq g\}$ exist.

- By asking about the dual of the lattice, also min{h | f ≤ g ⋅ h} and min{h | f ≤ h ⋅ f} are relevant.
- If · is the meet or join, we have a Heyting or Brouwer algebra.
- In the early days, Brattka and Gherardi asked whether the Weihrauch degrees are a Brouwer algebra.

A residuated lattice is a lattice equipped with a monoidal operation \cdot such that $\max\{h \mid f \cdot h \leq g\}$ and $\max\{h \mid h \cdot f \leq g\}$ exist.

- By asking about the dual of the lattice, also min{h | f ≤ g ⋅ h} and min{h | f ≤ h ⋅ f} are relevant.
- If · is the meet or join, we have a Heyting or Brouwer algebra.
- In the early days, Brattka and Gherardi asked whether the Weihrauch degrees are a Brouwer algebra.

A residuated lattice is a lattice equipped with a monoidal operation \cdot such that $\max\{h \mid f \cdot h \leq g\}$ and $\max\{h \mid h \cdot f \leq g\}$ exist.

- By asking about the dual of the lattice, also min{h | f ≤ g ⋅ h} and min{h | f ≤ h ⋅ f} are relevant.
- If · is the meet or join, we have a Heyting or Brouwer algebra.
- In the early days, Brattka and Gherardi asked whether the Weihrauch degrees are a Brouwer algebra.

A residuated lattice is a lattice equipped with a monoidal operation \cdot such that $\max\{h \mid f \cdot h \leq g\}$ and $\max\{h \mid h \cdot f \leq g\}$ exist.

- By asking about the dual of the lattice, also min{h | f ≤ g ⋅ h} and min{h | f ≤ h ⋅ f} are relevant.
- If · is the meet or join, we have a Heyting or Brouwer algebra.
- In the early days, Brattka and Gherardi asked whether the Weihrauch degrees are a Brouwer algebra.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. $\max_{\substack{\leq W \\ otherwise.}} \{h \mid f \sqcup h \leq_W g\}$ is boring, it is 0 if $f \leq_W g$ and g
- 2. $\min_{\leq w} \{h \mid f \leq_W g \sqcup h\}$ does not exist (Higuchi & P)
- 3. $\max_{\leq w} \{h \mid f \times h \leq_W g\}$ is our main focus here.
- 4. $\min_{\leq w} \{h \mid f \leq_W g \times h\}$ does not exist (Higuchi & P)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. $\max_{\substack{\leq w \\ otherwise.}} \{h \mid f \sqcup h \leq_W g\}$ is boring, it is 0 if $f \leq_W g$ and g
- 2. $\min_{\leq_{\mathrm{W}}} \{h \mid f \leq_{\mathrm{W}} g \sqcup h\}$ does not exist (Higuchi & P)
- 3. $\max_{\leq W} \{h \mid f \times h \leq_W g\}$ is our main focus here.
- 4. $\min_{\leq w} \{h \mid f \leq_W g \times h\}$ does not exist (Higuchi & P)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. $\max_{\substack{\leq w \\ otherwise.}} \{h \mid f \sqcup h \leq_W g\}$ is boring, it is 0 if $f \leq_W g$ and g
- 2. $\min_{\leq_{W}} \{h \mid f \leq_{W} g \sqcup h\}$ does not exist (Higuchi & P)
- 3. $\max_{\leq_{\mathrm{W}}} \{h \mid f \times h \leq_{\mathrm{W}} g\}$ is our main focus here.
- 4. $\min_{\leq w} \{h \mid f \leq_W g \times h\}$ does not exist (Higuchi & P)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. $\max_{\substack{\leq w \\ otherwise.}} \{h \mid f \sqcup h \leq_W g\}$ is boring, it is 0 if $f \leq_W g$ and g
- 2. $\min_{\leq_{W}} \{h \mid f \leq_{W} g \sqcup h\}$ does not exist (Higuchi & P)
- 3. $\max_{\leq_{\mathrm{W}}} \{h \mid f \times h \leq_{\mathrm{W}} g\}$ is our main focus here.
- 4. $\min_{\leq_{\mathrm{W}}} \{h \mid f \leq_{\mathrm{W}} g \times h\}$ does not exist (Higuchi & P)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. $\max_{\substack{\leq w \\ otherwise.}} \{h \mid f \sqcup h \leq_W g\}$ is boring, it is 0 if $f \leq_W g$ and g
- 2. $\min_{\leq_{W}} \{h \mid f \leq_{W} g \sqcup h\}$ does not exist (Higuchi & P)
- 3. $\max_{\leq_{\mathrm{W}}} \{h \mid f \times h \leq_{\mathrm{W}} g\}$ is our main focus here.
- 4. $\min_{\leq_{\mathrm{W}}} \{h \mid f \leq_{\mathrm{W}} g \times h\}$ does not exist (Higuchi & P)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

5. $\max_{\leq_{\mathrm{W}}} \{h \mid f \star h \leq_{\mathrm{W}} g\}$ might exist, to be studied.

6. $\max_{\leq_{\mathrm{W}}} \{h \mid h \star f \leq_{\mathrm{W}} g\}$ does not exist.

- 7. $\min_{\leq w} \{h \mid f \leq_W g \star h\}$ exists and was studied as $g \to f$ by Brattka & P.
- 8. $\min_{\leq w} \{h \mid f \leq_W h \star g\}$ does not exist (Brattka & P).
- 9. $\max_{\leq w} \{h \mid f \sqcap h \leq_W g\}$ does not exist (Higuchi & P).
- 10. $\min_{\leq w} \{h \mid f \leq_W g \sqcap h\}$ is boring (either it is *f*, or the top element, or undefined).

- 6. $\max_{\leq_{\mathrm{W}}} \{h \mid h \star f \leq_{\mathrm{W}} g\}$ does not exist.
- 7. $\min_{\leq_W} \{h \mid f \leq_W g \star h\}$ exists and was studied as $g \to f$ by Brattka & P.
- 8. $\min_{\leq w} \{h \mid f \leq_W h \star g\}$ does not exist (Brattka & P).
- 9. $\max_{\leq w} \{h \mid f \sqcap h \leq_W g\}$ does not exist (Higuchi & P).
- 10. $\min_{\leq w} \{h \mid f \leq_W g \sqcap h\}$ is boring (either it is *f*, or the top element, or undefined).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 6. $\max_{\leq_{\mathrm{W}}} \{h \mid h \star f \leq_{\mathrm{W}} g\}$ does not exist.
- 7. $\min_{\leq_{W}} \{h \mid f \leq_{W} g \star h\}$ exists and was studied as $g \to f$ by Brattka & P.
- 8. $\min_{\leq_{W}} \{h \mid f \leq_{W} h \star g\}$ does not exist (Brattka & P).
- 9. $\max_{\leq w} \{h \mid f \sqcap h \leq_W g\}$ does not exist (Higuchi & P).
- 10. $\min_{\leq w} \{h \mid f \leq_W g \sqcap h\}$ is boring (either it is *f*, or the top element, or undefined).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 6. $\max_{\leq_{\mathrm{W}}} \{h \mid h \star f \leq_{\mathrm{W}} g\}$ does not exist.
- 7. $\min_{\leq_W} \{h \mid f \leq_W g \star h\}$ exists and was studied as $g \to f$ by Brattka & P.
- 8. $\min_{\leq_{W}} \{h \mid f \leq_{W} h \star g\}$ does not exist (Brattka & P).
- 9. $\max_{\leq_{\mathrm{W}}} \{h \mid f \sqcap h \leq_{\mathrm{W}} g\}$ does not exist (Higuchi & P).
- 10. $\min_{\leq w} \{h \mid f \leq_W g \sqcap h\}$ is boring (either it is *f*, or the top element, or undefined).

- 6. $\max_{\leq_{\mathrm{W}}} \{h \mid h \star f \leq_{\mathrm{W}} g\}$ does not exist.
- 7. $\min_{\leq_{W}} \{h \mid f \leq_{W} g \star h\}$ exists and was studied as $g \to f$ by Brattka & P.
- 8. $\min_{\leq_{W}} \{h \mid f \leq_{W} h \star g\}$ does not exist (Brattka & P).
- 9. $\max_{\leq_{\mathrm{W}}} \{h \mid f \sqcap h \leq_{\mathrm{W}} g\}$ does not exist (Higuchi & P).
- 10. $\min_{\leq W} \{h \mid f \leq_W g \sqcap h\}$ is boring (either it is *f*, or the top element, or undefined).

How we actually got to the question

A more systematic alternative history

Constructing quotients and some algebraic properties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Calculating some quotients

Constructing the quotient

Definition (Goh, P & Valenti)

Given $F, G :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ with *G* different from 0, we define their parallel quotient $F/G :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ as follows:

 $\mathsf{dom}(F/G) := \{ \langle n, k, p \rangle \mid \forall q \in \mathsf{dom}(G) \ \Phi_n(\langle p, q \rangle) \in \mathsf{dom}(F) \land$

 $\dots \forall r \in F(\Phi_n(\langle p, q \rangle)) \Phi_k(\langle p, q, r \rangle) \in G(q) \}$

 $F/G(\langle n,k,p\rangle) := \{\langle q,r\rangle \mid q \in \mathsf{dom}(G) \land r \in F(\Phi_n(\langle p,q\rangle))\}$

A D F A 同 F A E F A E F A Q A

If g is pointed, f/g ≤_W f f/g is pointed iff g ≤_W f (f/g)/h ≡_W f/(g × h) (f □ g)/h ≡_W (f/h) □ (g/h) f/(g ⊔ h) ≡_W (f/g) □ (f/h)

If g is pointed, f/g ≤_W f
 f/g is pointed iff g ≤_W f
 (f/g)/h ≡_W f/(g × h)
 (f □ g)/h ≡_W (f/h) □ (g/h)
 f/(g □ h) ≡_W (f/g) □ (f/h)

If g is pointed, f/g ≤_W f
 f/g is pointed iff g ≤_W f
 (f/g)/h ≡_W f/(g × h)
 (f □ g)/h ≡_W (f/h) □ (g/h)
 f/(g □ h) ≡_W (f/g) □ (f/h)

- ► If *g* is pointed, $f/g \leq_W f$
- f/g is pointed iff $g \leq_W f$

$$\blacktriangleright (f/g)/h \equiv_{\mathrm{W}} f/(g \times h)$$

$$\blacktriangleright (f \sqcap g)/h \equiv_{\mathrm{W}} (f/h) \sqcap (g/h)$$

► $f/(g \sqcup h) \equiv_{\mathrm{W}} (f/g) \sqcap (f/h)$

- ► If *g* is pointed, $f/g \leq_W f$
- ► f/g is pointed iff $g \leq_W f$

$$\blacktriangleright (f/g)/h \equiv_{\mathrm{W}} f/(g \times h)$$

$$\blacktriangleright (f \sqcap g)/h \equiv_{\mathrm{W}} (f/h) \sqcap (g/h)$$

►
$$f/(g \sqcup h) \equiv_{\mathrm{W}} (f/g) \sqcap (f/h)$$

More algebraic properties

$\blacktriangleright (a \sqcup b)/(?c) \equiv_{\mathrm{W}} a/(?c) \sqcup b/(?c)$

- $\blacktriangleright (F/F)^* \equiv_{\mathrm{W}} F/F$
- ▶ F^*/G is either 0 or $F^* \times d_A$ for some $A \subseteq \mathbb{N}^{\mathbb{N}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

More algebraic properties

(a ⊔ b)/(?c) ≡_W a/(?c) ⊔ b/(?c) (F/F)* ≡_W F/F F*/G is either 0 or F* × d_A for some A ⊂ N^N

- ・ロト ・ 個 ト ・ ヨ ト ・ ヨ ・ の へ ()・

More algebraic properties

• F^*/G is either 0 or $F^* \times d_A$ for some $A \subseteq \mathbb{N}^{\mathbb{N}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Implication on the Medvedev degrees

Definition For $A \subseteq \mathbb{N}^{\mathbb{N}}$, let $d_A : A \to \{0\}$ be the unique such morphism.

Proposition (Higuchi P)

 $A \mapsto d_A$ is a lattice embedding of the dual of the Medvedev degrees \mathfrak{W}^{op} into the Weihrauch degrees \mathfrak{W} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition $d_A/d_B \equiv w d_B$

Implication on the Medvedev degrees

Definition

For $A \subseteq \mathbb{N}^{\mathbb{N}}$, let $d_A : A \to \{0\}$ be the unique such morphism.

Proposition (Higuchi P)

 $A \mapsto d_A$ is a lattice embedding of the dual of the Medvedev degrees \mathfrak{W}^{op} into the Weihrauch degrees \mathfrak{W} .

(ロ) (同) (三) (三) (三) (○) (○)

Proposition $d_A/d_B \equiv_W d_{B\to A}$

Implication on the Medvedev degrees

Definition

For $A \subseteq \mathbb{N}^{\mathbb{N}}$, let $d_A : A \to \{0\}$ be the unique such morphism.

Proposition (Higuchi P)

 $A \mapsto d_A$ is a lattice embedding of the dual of the Medvedev degrees \mathfrak{W}^{op} into the Weihrauch degrees \mathfrak{W} .

(日) (日) (日) (日) (日) (日) (日)

Proposition

 $d_A/d_B \equiv_W d_{B
ightarrow A}$

How we actually got to the question

A more systematic alternative history

Constructing quotients and some algebraic properties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Calculating some quotients

Finite closed choice

Proposition $C_n/C_k \equiv_W C_{\lfloor \frac{n}{k} \rfloor}$ Corollary $C_2/C_2 \equiv_W 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite closed choice

Proposition $C_n/C_k \equiv_W C_{\lfloor \frac{n}{k} \rfloor}$ Corollary $C_3/C_2 \equiv_W 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Pigeon Hole Principle

Proposition $RT_2^1/LPO \equiv_W 1$

Proposition $RT_3^1/LPO \equiv_W LPO$

Proposition $RT_3^1/RT_2^1 \equiv_W C_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Pigeon Hole Principle

Proposition $RT_2^1/LPO \equiv_W 1$

Proposition $RT_3^1/LPO \equiv_W LPO$

Proposition $RT_3^1/RT_2^1 \equiv_W C_2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pigeon Hole Principle

Proposition $RT_2^1/LPO \equiv_W 1$

Proposition $RT_3^1/LPO \equiv_W LPO$

Proposition $RT_3^1/RT_2^1 \equiv_W C_2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More on the pigeon hole principle

Proposition $\operatorname{RT}_{n+1}^1/\operatorname{ACC}_{\mathbb{N}} \equiv_W \operatorname{RT}_n^1$

Corollary $(RT_2^1 \times RT_2^1)/(ACC_N \times RT_2^1) \equiv_W C_2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

More on the pigeon hole principle

Proposition $RT_{n+1}^{1}/ACC_{\mathbb{N}} \equiv_{W} RT_{n}^{1}$ Corollary $(RT_{2}^{1} \times RT_{2}^{1})/(ACC_{\mathbb{N}} \times RT_{2}^{1}) \equiv_{W} C_{2}$

One more

Proposition $CC_{[0,1]}/\mathbb{N} \equiv_W C_2^*$

The end (for now)

That's all, folks!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●