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Abstract. We study different computable versions of Baire’s Category
Theorem in computable analysis. Similarly, as in constructive analysis,
different logical forms of this theorem lead to different computational
interpretations. We demonstrate that, analogously to the classical theo-
rem, one of the computable versions of the theorem can be used to con-
struct interesting counterexamples, such as a computable but nowhere
differentiable function.
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1 Introduction

Baire’s Category Theorem states that a complete metric space X cannot be
decomposed into a countable union of nowhere dense closed subsets An (cf. [7]).
Classically, we can bring this statement into the following two equivalent logical
forms:

1. For all sequences (An)n∈Nof closed and nowhere dense subsets An ⊆ X,
there exists some point x ∈ X \⋃∞

n=0 An,
2. for all sequences (An)n∈Nof closed subsets An ⊆ X with X =

⋃∞
n=0 An,

there exists some k ∈ N such that Ak is somewhere dense.

Both logical forms of the classical theorem have interesting applications.
While the first version is often used to ensure the existence of certain types
of counterexamples, the second version is for instance used to prove some im-
portant theorems in functional analysis, like the Open Mapping Theorem and
the Closed Graph Theorem [7]. However, from the computational point of view
the content of both logical forms of the theorem is different. This has already
been observed in constructive analysis, where a discussion of the theorem can
be found in [6].

We will study the theorem from the point of view of computable analysis,
which is the Turing machine based theory of computable real number functions,
as it has been developed by Pour-El and Richards [11], Ko [8], Weihrauch [13]
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and others. This line of research is based on classical logic and computability is
just considered as another property of classical numbers, functions and sets. In
this spirit one version of the Baire Category Theorem has already been proved
by Yasugi, Mori and Tsujii [14].

In the representation based approach to computable analysis, which has been
developed by Weihrauch and others [13] under the name “Type-2 theory of ef-
fectivity”, the computational meaning of the Baire Category Theorem can be
analysed very easily. Depending on how the sequence (An)n∈Nis represented, i.e.
how it is “given”, we can compute an appropriate point x in case of the first ver-
sion or compute a suitable index k in case of the second version. Roughly speak-
ing, the second logical version requires stronger information on the sequence of
sets than the first version. Unfortunately, this makes the second version of the
theorem less applicable than its classical counterpart, since this strong type of
information on the sequence (An)n∈Nis rarely available.

We close this introduction with a short survey on the organisation of the
paper. In the next section we briefly summarize some basic definitions from
computable analysis which will be used to formulate and prove our results. In
Section 3 we discuss the first version of the computable Baire Category Theo-
rem followed by an example of its application in Section 4, where we construct
computable but nowhere differentiable functions. Finally, in Section 5 we discuss
the second version of the theorem.

Further applications of the first version of the computable Baire Category
Theorem can be found in [3].

2 Preliminaries from Computable Analysis

In this section we briefly summarize some notions from computable analysis. For
details the interested reader is refered to [13]. The basic idea of the representation
based approach to computable analysis is to represent infinite objects like real
numbers, functions or sets, by infinite strings over some alphabet Σ (which
should at least contain the symbols 0 and 1). Thus, a representation of a set
X is a surjective mapping δ :⊆ Σω → X and in this situation we will call
(X, δ) a represented space. Here the inclusion symbol is used to indicate that the
mapping might be partial. If we have two represented spaces (X, δ) and (Y, δ′)
and a function f :⊆ X → Y , then f is called (δ, δ′)–computable, if there exits
some computable function F :⊆ Σω → Σω such that δ′F (p) = fδ(p) for all
p ∈ dom(fδ). Of course, we have to define computability of sequence functions
F :⊆ Σω → Σω to make this definition complete, but this can be done via Turing
machines: F is computable if there exists some Turing machine, which computes
infinitely long and transforms each sequence p, written on the input tape, into
the corresponding sequence F (p), written on the one-way output tape. Later on,
we will also need computable multi-valued operations f :⊆ X � Y , which are
defined analogously to computable functions by substituting δ′F (p) ∈ fδ(p) for
the equation above. If the represented spaces are fixed or clear from the context,
then we will simply call a function or operation f computable. A computable
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sequence is a computable function f : N → X, where we assume that N is
represented by δN(1n0ω) := n and a point x ∈ X is called computable, if there is
a constant computable function with value x.

Given two represented spaces (X, δ) and (Y, δ′), there is a canonical rep-
resentation [δ, δ′] of X × Y and a representation [δ → δ′] of certain func-
tions f : X → Y . If δ, δ′ are admissible representations of T0–spaces with
countable bases (cf. [13]), then [δ → δ′] is actually a representation of the set
C(X, Y ) of continuous functions f : X → Y . If Y = R, then we write for short
C(X) := C(X,R). The function space representation can be characterized by
the fact that it admits evaluation and type conversion. Evaluation means that
C(X, Y ) × X → Y, (f, x) 7→ f(x) is ([[δ → δ′], δ], δ′)–computable. Type conver-
sion means that for any represented space (Z, δ′′) a function f : Z → C(X, Y ) is
(δ′′, [δ → δ′])–computable, if and only if the associated function f̂ : Z ×X → Y ,
defined by f̂(z, x) := f(z)(x), is ([δ′′, δ], δ′)–computable. Moreover, the [δ → δ′]–
computable points are just the (δ, δ′)–computable functions. Given a represented
space (X, δ), we will also use the representation δN:= [δN→ δ] of the set of se-
quences XN. Finally, we will call a subset A ⊆ X δ–r.e., if there exists some
Turing machine that recognizes A in the following sense: whenever an input
p ∈ Σω with δ(p) ∈ A is given to the machine, the machine stops after finitely
many steps, for all other p ∈ dom(δ) it computes forever.

Many interesting representations can be derived from computable metric
spaces and we will also use them to formulate the computable versions of the
Baire Category Theorem.

Definition 1 (Computable metric space). A tuple (X, d, α) is called com-
putable metric space, if

1. d : X × X → R is a metric on X,
2. α : N→ X is a sequence which is dense in X,
3. d ◦ (α × α) : N2 → R is a computable (double) sequence in R.

Here, we tacitly assume that the reader is familiar with the notion of a com-
putable sequence of reals, but we will come back to that point below. Obviously,
a computable metric space is especially separable. Given a computable metric
space (X, d, α), its Cauchy representation δX :⊆ Σω → X can be defined by

δX(01n001n101n2...) := lim
i→∞

α(ni)

for all ni such that d(α(ni), α(nj)) ≤ 2−i for all j > i (and undefined for all other
input sequences). In the following we tacitly assume that computable metric
spaces are represented by their Cauchy representation. If X is a computable
metric space, then it is easy to see that d : X × X → R becomes computable.
An important computable metric space is (R, d, αQ) with the Euclidean metric
d(x, y) := |x − y| and some standard numbering of the rational numbers, as
αQ〈i, j, k〉 := (i − j)/(k + 1). Here, 〈i, j〉 := 1/2(i + j)(i + j + 1) + j denotes
Cantor pairs and this definition is extended inductively to finite tuples. For
short we will occasionally write k := αQ(k). In the following we assume that R is
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endowed with the Cauchy representation δRinduced by the computable metric
space given above. This representation of R can also be defined, if (R, d, αQ)
just fulfills 1. and 2. of the definition above and this leads to a definition of
computable real number sequences without circularity.

Other important representations cannot be deduced from computable metric
spaces. Especially, we will use representations of the hyperspace of closed subsets
A(X) := {A ⊆ X : A closed} of a metric space X, which will be defined
in the following sections. For a more comprehensive discussion of hyperspace
representations, see [4]. Here, we just mention that we will denote the open
balls of (X, d) by B(x, ε) := {y ∈ X : d(x, y) < ε} for all x ∈ X, ε > 0
and correspondingly the closed balls by B(x, ε) := {y ∈ X : d(x, y) ≤ ε}.
Occasionally, we denote complements of sets A ⊆ X by Ac := X \ A.

3 First Computable Baire Category Theorem

For this section let (X, d, α) be some fixed complete computable metric space,
and let A := A(X) be the set of closed subsets. We can easily define a represen-
tation δ>

A of A by

δ>
A(01〈n0,k0〉01〈n1,k1〉01〈n2,k2〉...) := X \

∞⋃
i=0

B(α(ni), ki).

We write A> to indicate that we use the represented space (A, δ>
A). The com-

putable points A ∈ A> are the so-called co-r.e. closed subsets of X. From results
in [4] it directly follows that preimages of {0} of computable functions are com-
putable in A>. We formulate the result a bit more general.

Lemma 2. The operation C(X) → A>, f 7→ f−1{0} is computable and admits
a computable right inverse.

Using this fact we can immediately conclude that the union operation is
computable on A>.

Proposition 3. The operation A> ×A> → A>, (A, B) 7→ A∪B is computable.

Proof. Using evaluation and type conversion w.r.t. [δX → δR], it is straightfor-
ward to show that C(X) × C(X) → C(X), (f, g) 7→ f · g is computable, but if
f−1{0} = A and g−1{0} = B, then (f ·g)−1{0} = A∪B. Thus the desired result
follows from the previous Lemma 2. 2

Since computable functions have the property that they map computable
points to computable points, we can deduce that the class of co-r.e. closed sets
is closed under intersection.

Corollary 4. If A, B ⊆ X are co-r.e. closed, then A ∪ B is co-r.e. closed too.

Moreover, it is obvious that we can compute complements of open balls in
the following sense.
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Proposition 5.
(
X \ B(α(n), k)

)
〈n,k〉∈Nis a computable sequence in A>.

Using these both observations, we can prove the following first version of the
computable Baire Category Theorem just by transferring the classical proof.

Theorem 6 (First computable Baire Category Theorem). There exists
a computable operation ∆ :⊆ AN> � XNwith the following property: for any se-
quence (An)n∈Nof closed nowhere dense subsets of X, there exists some sequence
(xn)n∈N∈ ∆(An)n∈Nand all such sequences (xn)n∈Nare dense in X \⋃∞

n=0 An.

Proof. Let us fix some n = 〈n1, n2〉 ∈ N. We construct sequences (xn,k)k∈Nin X
and (rn,k)k∈Nin Q as follows: let x〈n1,n2〉,0 := α(n1), r〈n1,n2〉,0 := 2−n2 . Given
rn,i and xn,i we can effectively find some point xn,i+1 ∈ range(α) ⊆ X and a
rational εn,i+1 with 0 < εn,i+1 ≤ rn,i such that

B(xn,i+1, εn,i+1) ⊆ (X \ Ai) ∩ B(xn,i, rn,i) = (Ai ∪ X \ B(xn,i, rn,i))c.

One the one hand, such a point and radius have to exist since Ai is nowhere dense
and on the other hand, we can effectively find them, given a δ>N

A –name of the
sequence (An)n∈Nand using Propositions 3 and 5. Now let rn,i+1 := εn,i+1/2.
Altogether, we obtain a sequence of closed balls

B(xn,i+1, rn,i+1) ⊆ B(xn,i, rn,i) ⊆ ... ⊆ B(xn,0, rn,0)

with rn,i ≤ 2−i and thus xn := limi→∞ xn,i exists since X is complete and
the sequence (xn,i)i∈Nis even rapidly converging. Finally, the sequence (xn)n∈N
is dense in X \ ⋃∞

n=0 An, since for any pair (n1, n2) we obtain by definition
x〈n1,n2〉 ∈ B(α(n1), 2−n2). Altogether, the construction shows how a Turing
machine can transform each δ>N

A –name of a sequence (An)n∈Ninto a δX–name
of a suitable sequence (xn)n∈N. 2

As a direct corollary of this uniformly computable version of the Baire Cat-
egory Theorem we can conclude the following weak version.

Corollary 7. For any computable sequence (An)n∈Nof co-r.e. closed nowhere
dense subsets An ⊆ X, there exists some computable sequence (xn)n∈Nwhich is
dense in X \⋃∞

n=0 An.

Since any computable sequence (An)n∈Nof co-r.e. closed nowhere dense sub-
sets An ⊆ X is “sequentially effectively nowhere dense” in the sense of Yasugi,
Mori and Tsujii, we can conclude the previous corollary also from their effective
Baire Category Theorem [14].

It is a well-known fact that the set of computable real numbers Rc cannot
be enumerated by a computable sequence [13]. We obtain a new proof for this
fact and a generalization for computable complete metric spaces without isolated
points. First we prove the following simple proposition.

Proposition 8. The operation X → A>, x 7→ {x} is computable.

5



Proof. This follows directly from the fact that d : X × X → R is computable
and {x} = X \⋃{B(α(n), k) : d(α(n), x) > k and n, k ∈ N}. 2

If X is a metric space without isolated points, then all singleton sets {x} are
nowhere dense closed subsets. This allows to combine the previous proposition
with the computable Baire Category Theorem 7.

Corollary 9. If X is a computable complete metric space without isolated points,
then for any computable sequence (yn)n∈Nin X, there exists a computable se-
quence (xn)n∈Nin X such that (xn)n∈Nis dense in X \ {yn : n ∈ N}.

Using Theorem 6 it is straightforward to derive even a uniform version of
this theorem which states that we can effectively find a corresponding sequence
(xn)n∈Nfor any given sequence (yn)n∈N. Instead of formulating this uniform
version, we include the following corollary which generalizes the statement that
Rc cannot be enumerated by a computable sequence.

Corollary 10. If X is a computable complete metric space without isolated
points, then there exists no computable sequence (yn)n∈Nsuch that {yn : n ∈ N}
is the set of computable points of X.

4 Computable but Nowhere Differentiable Functions

In this section we want to effectivize the standard example of an application
of the Baire Category Theorem. We will show that there exists a computable
but nowhere differentiable function f : [0, 1] → R. It is not to difficult to con-
struct an example of such a function directly and actually, some typical examples
of continuous nowhere differentiable functions, like van der Waerden’s function
f : [0, 1] → R or Riemann’s function g : [0, 1] → R (cf. [9]), defined by

f(x) :=
∞∑

n=0

〈4nx〉
4n

and g(x) :=
∞∑

n=0

sin(n2πx)
n2

,

where 〈x〉 := min{x − [x], 1 + [x] − x} denotes the distance of x to the nearest
integer, can easily be seen to be computable. The purpose of this section is rather
to demonstrate that the computable version of the Baire Category Theorem can
be applied in similar situations as the classical one.

In this section we will use the computable metric space of continuous func-
tions (C[0, 1], dC, αQ[x]), where dC denotes the supremum metric, which can be
defined by dC(f, g) := maxx∈[0,1] |f(x) − g(x)| and αQ[x] denotes some standard
numbering of the set Q[x] of rational polynomials p : [0, 1] → R. By δC we denote
the Cauchy representation of this space and in the following we tacitly assume
that C[0, 1] is endowed with this representation. For technical simplicity we as-
sume that functions f : [0, 1] → R are actually functions f : R→ R extended
constantly, i.e. f(x) = f(0) for x ≤ 0 and f(x) = f(1) for x ≥ 1. It is well-known
that a function f : [0, 1] → R is δC–computable, if it is computable considered
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as a function f : R→ R and we can actually replace δC by the restriction of
[δR→ δR] to C[0, 1] whenever it is helpful [13].

We will consider differentiability for functions f : [0, 1] → R only within
[0, 1]. If a function f : [0, 1] → R is differentiable at some point t ∈ [0, 1], then
the quotient | f(t+h)−f(t)

h | is bounded for all h 6= 0. Thus f belongs to the set

Dn :=
{

f ∈ C[0, 1] : (∃t ∈ [0, 1])(∀h ∈ R\ {0})
∣∣∣∣f(t + h) − f(t)

h

∣∣∣∣ ≤ n

}

for some n ∈ N. Because of continuity of the functions f , it suffices if the universal
quantification over h ranges over some dense subset of R\ {0} such as Q+ π in
order to obtain the same set Dn.

It is well-known, that all sets Dn are closed and nowhere dense [7]. Thus, by
the classical Baire Category Theorem, the set C[0, 1]\⋃∞

n=0 Dn is non-empty and
there exists some continuous but nowhere differentiable function f : [0, 1] → R.
Our aim is to prove that (Dn)n∈Nis a computable sequence of co-r.e. closed
nowhere dense subsets of C[0, 1], i.e. a computable sequence in A>(C[0, 1]). Then
we can apply the computable Baire Category Theorem 6 to ensure the existence
of a computable but nowhere differentiable function f : [0, 1] → R.

The crucial point is to get rid of the existential quantification of t over [0, 1]
since arbitrary unions of co-r.e. closed sets need not to be (co-r.e.) closed again.
The main tool will be the following Proposition which roughly speaking states
that co-r.e. closed subsets are closed under parametrized countable and com-
putable intersection and compact computable union.

Proposition 11. Let (X, δ) be some represented space and let (Y, d, α) be some
computable metric space.

1. If the function A : X ×N→ A>(Y ) is computable, then the countable inter-

section ∩A : X → A>(Y ), x 7→
∞⋂

n=0
A(x, n) is computable too.

2. If the function U : X ×R→ A>(Y ) is computable, then the compact union
∪U : X → A>(Y ), x 7→ ⋃

t∈[0,1]

U(x, t) is computable too.

Proof. 1. Let A : X × N→ A>(Y ) be computable. If for some fixed x ∈ X we
have A(x, n) = Y \⋃∞

k=0 B(α(ink), jnk) with ink, jnk ∈ N for all n, k ∈ N, then

∞⋂
n=0

A(x, n) =
∞⋂

n=0

(
Y \

∞⋃
k=0

B(α(ink), jnk)

)
= Y \


 ∞⋃

〈n,k〉=0

B(α(ink), jnk)


 .

Thus, it is straightforward to show that ∩A : X → A>(Y ) is computable too.

2. Now let U : X ×R→ A>(Y ) be computable. Let δ[0,1] :⊆ Σω → [0, 1] be the
signed digit representation of the unit interval, where Σ = {0, 1,−1} and δ[0,1]
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is defined in all possible cases by

δ[0,1](p) :=
∞∑

i=0

p(i)2−i.

It is known that dom(δ[0,1]) is compact and δ[0,1] is computably equivalent to
the Cauchy representation δR, restricted to [0, 1] (cf. [13]). Thus, U restricted to
X×[0, 1] is ([δ, δ[0,1]], δ>

A)–computable. Then there exists some Turing machine M
which computes a function F :⊆ Σω → Σω which is a ([δ, δ[0,1]], δ>

A)–realization
of U : X ×R→ A>(Y ). Thus, for each given input sequence 〈p, q〉 ∈ Σω with
x := δ(p) and t := δ[0,1](q) the machine M produces some output sequence
01〈nq0,kq0〉01〈nq1,kq1〉01〈nq2,kq2〉... such that

U(x, t) = Y \
∞⋃

i=0

B(α(nqi), kqi).

Since we will only consider a fixed p, we do not mention the corresponding
dependence in the indices of the values nqi, kqi. It is easy to prove that the set
W := {w ∈ Σ∗ : (∃q ∈ dom(δ[0,1])) w is a prefix of q} is recursive.

We will sketch the construction of a machine M ′ which computes the op-
eration ∪U : X → A>(Y ). On input p the machine M ′ works in parallel
phases 〈i, j, k〉 = 0, 1, 2, ... and produces an output r. In phase 〈i, j, k〉 it simu-
lates M on input 〈p, w0ω〉 for all words w ∈ Σk ∩ W and exactly k steps. Let
01〈nw0,kw0〉01〈nw1,kw1〉...01〈nwlw,kwlw 〉0 be the corresponding output of M (more
precisely: the longest prefix of the output which ends with 0). Then the machine
M ′ checks whether for all w ∈ Σk ∩ W there is some ιw = 0, ..., lw such that
d(α(i), α(nwιw)) + j < kwιw holds, which especially implies

B(α(i), j) ⊆
⋂

w∈Σk∩W

B(α(nwιw ), kwιw) ⊆
⋂

t∈[0,1]

Y \ U(x, t) = Y \⋃U(x).

The verification is possible since (X, d, α) is a computable metric space. As soon
as corresponding values ιw are found for all w ∈ Σk∩W , phase 〈i, j, k〉 is finished
with extending the output by 01〈i,j〉. Otherwise it might happen that the phase
never stops, but other phases may run in parallel.

We claim that this machine M ′ actually computes ∪U . On the one hand,
it is clear that B(α(i), j) ⊆ Y \ ∪U(x) whenever 01〈i,j〉 is written on the
output tape by M ′. Thus, if M ′ actually produces an infinite output r, then
we obtain immediately δ>

A(r) ⊆ ∪U(δ(p)). On the other hand, let y ∈ Y \
∪U(δ(p)). Then for any q ∈ dom(δ[0,1]) the machine M produces some out-
put sequence 01〈nq0,kq0〉01〈nq1,kq1〉01〈nq2,kq2〉... and there has to be some lq such
that y ∈ B(α(nqlq ), kqlq) and a finite number k of steps such that M produces
01〈nqlq ,kqlq〉0 on the output tape. Since dom(δ[0,1]) is compact, there is even a
common such k for all q ∈ dom(δ[0,1]). Let w′ := w0ω for all w ∈ Σ∗. Then there
exist i, j ∈ N such that

y ∈ B(α(i), j) ⊆
⋂

w∈Σk∩W

B(α(nw′lw′ ), kw′lw′ )
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and d(α(i), α(nw′lw′ )) + j < kw′lw′ . Thus M ′ will produce 01〈i,j〉 on the output
tape in phase 〈i, j, k〉. Altogether, this proves δ>

A(r) = ∪U(δ(p)) and thus the
operation ∪U : X → A>(Y ) is computable. 2

Now using this proposition, we can directly prove the desired result.

Theorem 12. There exists a computable sequence (fn)n∈Nof computable but
nowhere differentiable functions fn : [0, 1] → R such that {fn : n ∈ N} is dense
in C[0, 1].

Proof. If we can prove that (Dn)n∈Nis a computable sequence of co-r.e. nowhere
dense closed sets, then Corollary 7 implies the existence of a computable sequence
of computable functions fn in C[0, 1] \ ⋃∞

n=0 Dn. Since all somewhere differen-
tiable functions are included in some Dn, it follows that all fn are nowhere
differentiable. Since it is well-known that all Dn are nowhere dense, it suffices
to prove the computability property. We recall that it suffice to consider values
h ∈ Q+ π in the definition of Dn because of continuity of the functions f . We
define a function F : N×R×N× C[0, 1] → R by

F (n, t, k, f) := max
{∣∣∣∣f(t + k + π) − f(t)

k + π

∣∣∣∣− n, 0
}

.

Then using the evaluation property of [δR→ δR], one can prove that F is com-
putable. Using type conversion w.r.t. [δC → δR] one obtains computability of
F̂ : N × R× N → C(C[0, 1]), defined by F̂ (n, t, k)(f) := F (n, t, k, f). Using
Lemma 2 we can conclude that the mapping A : N×R×N→ A>(C[0, 1]) with
A(n, t, k) := (F̂ (n, t, k))−1{0} is computable. Thus by the previous proposition
∩A : N×R→ A>(C[0, 1]) is also computable and thus ∪ ∩ A : N→ A>(C[0, 1])
too. Now we obtain

∪ ∩ A(n) =
⋃

t∈[0,1]

∞⋂
k=0

{
f ∈ C[0, 1] :

∣∣∣∣f(t + k + π) − f(t)
k + π

∣∣∣∣ ≤ n

}
= Dn.

Thus, (Dn)n∈Nis a computable sequence of co-r.e. closed subsets of C[0, 1]. 2

5 Second Computable Baire Category Theorem

While the first version of the computable Baire Category Theorem has been
proved by a direct adaptation of the classical proof, the second version will
even be a consequence of the classical version. Whenever a classical theorem for
complete computable metric spaces X, Y has the form

(∀x)(∃y)R(x, y)

with a predicate R ⊆ X × Y which can be proven to be r.e. open, then the
theorem admits a computable multi-valued realization F : X � Y such that
R(x, y) holds for all y ∈ F (x) (cf. the Uniformization Theorem 3.2.40 in [2]).
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Actually, a computable version of the second formulation of the Baire Category
Theorem, given in the Introduction, can be derived as such a direct corollary of
the classical version.

Given a co-r.e. set A ⊆ X, the closure of its complement Ac needs not to be
co-r.e. again (cf. Proposition 5.4 in [1]). Thus, the operation A> → A>, A 7→ Ac

cannot be computable (and actually it is not even continuous in the correspond-
ing way). In order to overcome this deficiency, we can simply include the infor-
mation on Ac into a representing sequence of A. This is a usual trick in topology
and computable analysis to make functions continuous or computable, respec-
tively. So, if δ is an arbitrary representation of A, then the representation δ+ of
A, defined by

δ+〈p, q〉 := A : ⇐⇒ δ(p) = A and δ>
A(q) = Ac,

has automatically the property that A → A, A 7→ Ac becomes (δ+, δ>
A)–comput-

able. Here 〈 〉 : Σω × Σω → Σω denotes some appropriate computable pairing
function [13]. We can especially apply this procedure to δ := δ>

A. The corre-
sponding δ>+

A –computable sets A ⊆ X are called bi-co-r.e. closed sets. In this
case we write A>+ to denote the represented space (A, δ>+

A ). Now we can directly
conclude that the property “somewhere dense” is r.e.

Proposition 13. The set {A ∈ A : A is somewhere dense} is r.e. in A>+.

The proof follows directly from the fact that a closed set A ⊆ X is somewhere
dense, if and only if there exist n, k ∈ N such that B(α(n), k) ⊆ A◦ = Ac

c
. We

can now directly conclude the second computable version of the Baire Category
Theorem as a consequence of the classical version (and thus especially as a
consequence of the first computable Baire Category Theorem 6).

Theorem 14 (Second computable Baire Category Theorem). There ex-
ists a computable operation Σ :⊆ AN>+ � N with the following property: for any
sequence (An)n∈Nof closed subsets of X with X =

⋃∞
n=0 An, there exists some

〈i, j, k〉 ∈ Σ(An)n∈Nand for all such 〈i, j, k〉 we obtain B(α(i), j) ⊆ Ak.

Of course, if we replace A>+ by (A, δ+) with any other underlying represen-
tation δ instead of δ>

A, then the theorem would also hold true. We mention that
the corresponding constructive version of the theorem (Theorem 2.5 in [6]), if
directly translated into a computable version, leads to a weaker statement than
Theorem 14: if the sequence (An)n∈Nwould be effectively given by the sequences
of distance functions of A and Ac, this would constitute a stronger input infor-
mation than it is the case if it is given by δ>+

A . Now we can formulate a weak
version of the second Baire Category Theorem.

Corollary 15. For any computable sequence (An)n∈Nof bi-co-r.e. closed subsets
An ⊆ X with X =

⋃∞
j=0 A〈i,j〉 for all i ∈ N, there exists a total computable

function f : N→ N such that A〈i,f(i)〉 is somewhere dense for all i ∈ N.
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By applying some techniques from recursion theory [12, 10], we can prove
that the previous theorem and its corollary do not hold true with A> instead of
A>+. For this result we use as metric space the Euclidean space X = R.

Theorem 16. There exists a computable sequence (An)n∈Nof co-r.e. closed
subsets An ⊆ [0, 1] with [0, 1] =

⋃∞
j=0 A〈i,j〉 for all i ∈ N such that for every

computable f : N→ N there is some i ∈ N such that A〈i,f(i)〉 is nowhere dense.

Proof. We use some total Gödel numbering ϕ : N → P of the set of partial
recursive functions P := {f :⊆ N→ N : f computable} to define sets

A′
〈i,j〉 :=

min ϕ−1
i {j}⋃

k=0

{m

2k
: m = 0, ..., 2k

}
.

For this definition we assume min∅ = ∞. Whenever i ∈ N is the index of some
total recursive function ϕi : N → N such that range(ϕi) 6= N, then we obtain⋃∞

j=0 A′
〈i,j〉 = [0, 1] and A′

〈i,j〉 is somewhere dense, if and only if j 6∈ range(ϕi).
Using the smn-Theorem one can inductively prove that there is a total recursive
function r : N→ N such that ϕr〈i,j〉 is total if ϕi is and

range(ϕr〈i,〈k,〈n0,...,nk〉〉〉) = range(ϕi) ∪ {n0, ..., nk}.
Let i0 be the index of some total recursive function which enumerates some
simple set S := range(ϕi0) and define A〈i,j〉 := A′

〈r〈i0,i〉,j〉. Then (An)n∈Nis a
computable sequence of co-r.e. closed subsets An ⊆ [0, 1]. Let us assume that
there exists a total recursive function f : N→ N with the property that A〈i,f(i)〉
is somewhere dense for all i ∈ N. Let j0 ∈ N\S and define a function g : N→ N

inductively by g(0) := j0 and g(n + 1) := f(r〈i0 , 〈n, 〈g(0), ...g(n)〉〉〉). Then g is
computable and range(g) is some infinite r.e. subset of the immune set N \ S.
Contradiction! 2

The reader might notice that the constructed sequence (An)n∈Nis even a
computable sequence of recursive closed sets (cf. [5, 13]). Even a simpler variant
of the same idea can be used to prove that in a well-defined sense there exists no
continuous multi-valued operation Σ :⊆ AN> � N which meets the conditions of
Theorem 14.

Unfortunately, the simplicity of the proof of the second computable Baire
Category Theorem 14 corresponds to its uselessness. The type of information
that one could hope to gain from an application of the theorem has already to be
fed in by the input information. However, Theorem 16 shows that a substantial
improvement of Theorem 14 seems to be impossible.
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