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Abstract
We investigate the computable content of certain theorems which

are sometimes called the “principles” of the theory of Banach spaces.
Among these the main theorems are the Open Mapping Theorem, the
Closed Graph Theorem and the Uniform Boundedness Theorem. We
also study closely related theorems, as Banach’s Inverse Mapping The-
orem, the Theorem on Condensation of Singularities and the Banach-
Steinhaus Theorem. From the computational point of view these the-
orems are interesting, since their classical proofs rely more or less on the
Baire Category Theorem and therefore they count as “non-constructive”.
These theorems have already been studied in Bishop’s constructive anal-
ysis but the picture that we can draw in computable analysis differs in
several points. On the one hand, computable analysis is based on clas-
sical logic and thus can apply stronger principles to prove that certain
operations are computable. On the other hand, classical logic enables
us to prove “semi-constructive” versions of theorems, which can hardly
be expressed in constructive analysis. For instance, the computable ver-
sion of Banach’s Inverse Mapping Theorem states that the inverse T−1

of a linear computable and bijective operator T from a computable Ba-
nach space into a computable Banach space is computable too, whereas
the mapping T 7→ T−1 itself is not computable. Thus, there is no gen-
eral algorithmic procedure to transfer a program of T into a program
of T−1, although a program for T−1 always exists. In this way we
can explore the border between computability and non-computability
in the theory of Banach spaces. As applications we briefly discuss the
effective solvability of the initial value problem of ordinary linear dif-
ferential equations and we prove the existence of computable functions
with divergent Fourier series. The focus of our investigation is mainly
on infinite-dimensional separable Banach spaces, but also the finite-
dimensional case, as well as the non-separable case, will be discussed.
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Introduction 3

1 Introduction

In the twenties and early thirties of the twentieth century a Polish group of
mathematicians, headed by Stefan Banach, developed central parts of a dis-
cipline which is known as functional analysis today. The names of several
members of this group, like Steinhaus, Mazur, Schauder, Ulam and others
are inseparably connected to well-known functional analytic theorems, like the
Banach-Schauder Theorem (which is also called Open Mapping Theorem), Ba-
nach’s Inverse Mapping Theorem and the Banach-Steinhaus Theorem [Ban32].

It is not that well-known that only a bit later Banach and Mazur started
to work in computable analysis, which is the theory of computable real number
functions [BM37]. This discipline had been initiated by Turing, who mentioned
as one of his motivations for the invention of his famous machine model the
goal to describe real number computations [Tur36]. However, Turing himself
did not systematically develop a theory of computable real number functions
as it was done later by Banach and Mazur. Unfortunately, the Polish school
was scattered by the disorders of the second world war and it was not before
the late forties when Mazur gave lectures on computable analysis based on
the original work of Banach and himself. Later on Grzegorczyk and Rasiowa
compiled a book on this lectures [Maz63]. Because of his own contributions
it is Grzegorczyk and the French mathematician Lacombe who count as the
main founders of computable analysis, as it is understood nowadays [Grz55,
Grz57, Lac55a, Lac55b, Lac55c]. It is a historical curiosity that Banach and
Mazur’s original definition of a computable function, while suitable for linear
operators in Banach spaces (cf. Theorem 8.7), turned out to be to special for
the general case of (non-linear) real number functions (cf. [PER89, Her01] for a
discussion of different definitions). Today, computable analysis, understood as
the theory of computability of real number functions based on classical logic,
is represented by several streams, mainly based on the work of Pour-El and
Richards [PER89], Ko [Ko91] and Weihrauch [Wei00] and many others. Some
aspects of functional analysis, such as the theory of eigenvalues, Lp and Fréchet
spaces, distributions and other topics, have already been investigated in this
line of research [PER89, Was95, WY96, Was99, YMT99, Zho99, ZZ99, ZW00].

The purpose of this paper is a fusion of two branches of research of Banach’s
school: basic principles of functional analysis and computability aspects. In
other words: we want to study computability aspects of Banach space prin-
ciples. And we will do this using the representation based approach to com-
putable analysis as it has been developed by Kreitz and Weihrauch and others
[Wei00]. This so-called “type-2 theory of effectivity” offers a uniform language
to study computability properties of points, sequences, subsets, functions and
multi-valued operations and thus, is rich enough to express typical functional
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analytic theorems. In the following section we will give a brief introduction
into the representation based approach to computable analysis and we will
introduce those concepts which will be used in later sections. In Section 3 we
additionally discuss computable metric spaces and computable Banach spaces
and basic examples of such spaces. These definitions are the essential defi-
nitions for our investigation since nearly all computable versions of Banach
space principles will be expressed using these types of spaces. Since the Open
Mapping Theorem and the Closed Graph Theorems require computations with
subsets, we have to introduce some hyperspaces and their representations in
Section 4. In Sections 5 to 13 we investigate the computational content of
several theorems and we study some applications. Especially, we will treat the
following theorems:

Principles of the Theory of Banach Spaces:

• the Open Mapping Theorem, which states that each linear bounded
and surjective operator T : X → Y is open,

• Banach’s Inverse Mapping Theorem, which states that each linear
bounded and bijective operator T : X → Y has a bounded inverse T−1,

• the Closed Graph Theorem, which states that each linear operator
T : X → Y with a closed graph is bounded,

• the Uniform Boundedness Theorem, which states that each sequence
(Tn)n∈N of pointwise bounded linear operators Tn : X → Y is uniformly
bounded, and

• the Banach-Steinhaus Theorem, which states that each pointwise
convergent sequence (Tn)n∈N of linear operators Tn : X → Y has a linear
bounded operator as pointwise limit.

Additionally, we discuss the Theorem on Condensation of Singularities in
Section 10. Later on we will formulate these theorems more precisely; they
can also be found in most of the classical textbooks on functional analysis
as e.g. [Ban32, DS59, GP65]. The Uniform Boundedness Theorem has first
been published in Banach’s thesis [Ban22], the Banach-Steinhaus Theorem and
the Theorem on Condensation of Singularities in [BS27] (which also includes
the Uniform Boundedness Theorem, proved by a Baire Category argument).
Banach’s Inverse Mapping Theorem has first been published in [Ban29] and
the Open Mapping Theorem is due to Schauder [Sch30] (who also gave the first
proof of the Inverse Mapping Theorem based on the Open Mapping Theorem).
For further historical remarks see [DS59, Heu86].
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As an application we show in Section 7 that the computable version of
Banach’s Inverse Mapping Theorem provides a simple proof of the fact that
the solution operator of the initial value problem of a system of ordinary linear
differential equations is computable. As a second application we prove in
Section 11 that the computable version of the Theorem on Condensation of
Singularities implies the existence of a computable function whose Fourier
series diverges. In Section 14 we discuss improvements of some results for the
finite-dimensional case and in Section 15 we briefly present some results on
non-separable spaces. In the conclusions in Section 16 we will briefly compare
our results with results from Bishop’s school of constructive analysis [BB85]
and with Simpson’s results on reverse mathematics [Sim99].

Two appendices are devoted to special topics. In Appendix A it will be
shown that some of our results can be expressed as results on representations
of the space of bounded linear operators. We extend our results in order
to obtain a precise picture of the lattice of these representations. Finally,
Appendix B discusses computational versions of Baire’s Category Theorem.
The results of this appendix will be published in [Bra01] and have been included
for completeness since they will be applied in Sections 9 and 10.

2 Preliminaries from Computable Analysis

In this section we briefly summarize some notions from computable analy-
sis. For details the interested reader is refered to [Wei00]. The basic idea
of the representation based approach to computable analysis is to represent
infinite objects like real numbers, functions or sets, by infinite strings over
some alphabet Σ (which should at least contain the symbols 0 and 1). Thus,
a representation of a set X is a surjective mapping δ :⊆ Σω → X and in this
situation we will call (X, δ) a represented space. Here Σω denotes the set of
infinite sequences over Σ and the inclusion symbol is used to indicate that the
mapping might be partial. If we have two represented spaces, then we can
define the notion of a computable function.

Definition 2.1 (Computable function) Let (X, δ) and (Y, δ′) be represen-
ted spaces. A function f :⊆ X → Y is called (δ, δ′)–computable, if there exit
some computable function F :⊆ Σω → Σω such that

δ′F (p) = fδ(p) (1)

for all p ∈ dom(fδ).

The definition is illustrated by the commutative diagram in Figure 1. Of
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Σω -

X -

F

f

?

δ′δ

Σω

Y

?

Figure 1: Computability of a function f : X → Y .

course, we have to define computability of functions F :⊆ Σω → Σω to make
this definition complete, but this can be done via Turing machines: F is com-
putable if there exists some Turing machine, which computes infinitely long
and transforms each sequence p, written on the input tape, into the corre-
sponding sequence F (p), written on the one-way output tape. Later on, we
will also need computable multi-valued operations f :⊆ X � Y , which are
defined analogously to computable functions by substituting δ′F (p) ∈ fδ(p)
for Equation 1 above. If the represented spaces are fixed or clear from the
context, then we will simply call a function or operation f computable.

For the comparison of representations it will be useful to have the notion of
reducibility of representations. If δ, δ′ are both representations of a set X, then δ
is called reducible to δ′, δ ≤ δ′ in symbols, if there exists a computable function
F :⊆ Σω → Σω such that δ(p) = δ′F (p) for all p ∈ dom(δ). Obviously, δ ≤ δ′

holds, if and only if the identity id : X → X is (δ, δ′)–computable. Moreover,
δ and δ′ are called equivalent, δ ≡ δ′ in symbols, if δ ≤ δ′ and δ′ ≤ δ.

Analogously to the notion of computability w.r.t. representations we can
define the notion of (δ, δ′)–continuity for single- and multi-valued operations,
by substituting a continuous function F :⊆ Σω → Σω for the computable
function F in the definitions above. On Σω we use the Cantor topology, which is
simply the product topology of the discrete topology on Σ. The corresponding
reducibility will be called continuous reducibility and we will use the symbols ≤t

and ≡t in this case. Again we will simply say that the corresponding function
is continuous, if the representations are fixed or clear from the context.

This will lead to no confusion with the ordinary topological notion of con-
tinuity, as long as we are dealing with admissible representations. A represen-
tation δ of a topological space X is called admissible, if δ is maximal among
all continuous representations δ′ of X, i.e. if δ′ ≤t δ holds for all continuous
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representations δ′ of X. If δ, δ′ are admissible representations of T0–spaces with
countable bases, X, Y , then a function f :⊆ X → Y is (δ, δ′)–continuous, if
and only if it is continuous in the ordinary topological sense. For an extension
of these notions to larger classes of spaces cf. [Sch00, Sch01].

Given a represented space (X, δ), we will occasionally use the notions of
a computable sequence and a computable point. A computable sequence is a
computable function f : N → X, where we assume that N = {0, 1, 2, ...} is
represented by δN(1

n0ω) := n and a point x ∈ X is called computable, if there
is a constant computable function with value x.

Given two represented spaces (X, δ) and (Y, δ′), there is a canonical rep-
resentation [δ, δ′] of X × Y and a representation [δ → δ′] of certain functions
f : X → Y . If δ, δ′ are admissible representations of T0–spaces with countable
bases, then [δ → δ′] is actually a representation of the set C(X, Y ) of continu-
ous functions f : X → Y . If Y = R, then we write for short C(X) := C(X,R).
The function space representation can be characterized by the fact that it
admits evaluation and type conversion.

Proposition 2.2 (Evaluation and type conversion) Let (X, δ), (Y, δ′) be
admissibly represented T0–spaces with countable bases and let (Z, δ′′) be a rep-
resented space. Then:

(1) (Evaluation) ev : C(X, Y ) × X → Y, (f, x) 7→ f(x) is ([[δ → δ′], δ], δ′)–
computable,

(2) (Type conversion) f : Z × X → Y , is ([δ′′, δ], δ′)–computable, if and
only if the function f̌ : Z → C(X, Y ), defined by f̌(z)(x) := f(z, x) is
(δ′′, [δ → δ′])–computable.

The proof of this proposition is based on a version of smn– and utm-
Theorem and can be found in [Wei00]. If (X, δ), (Y, δ′) are admissibly rep-
resented T0–spaces with countable bases, then in the following we will always
assume that C(X, Y ) is represented by [δ → δ′]. It is known that the com-
putable points in (C(X, Y ), [δ → δ′]) are just the (δ, δ′)–computable functions
f : X → Y [Wei00]. If (X, δ) is a represented space, then we will always assume
that the set of sequences XN is represented by δN := [δN→ δ]. The computable
points in (XN, δN) are just the computable sequences in (X, δ). Moreover, we
assume that Xn is always represented by δn, which can be defined inductively
by δ1 := δ and δn+1 := [δn, δ].

Finally, we will call a subset A ⊆ X δ–r.e., if there exists some Turing
machine that recognizes A in the following sense: whenever an input p ∈ Σω

with δ(p) ∈ A is given to the machine, the machine stops after finitely many
steps, for all other p ∈ dom(δ) it computes forever.
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3 Computable Metric and Banach Spaces

In this section we will briefly discuss computable metric spaces and com-
putable Banach spaces. The notion of a computable Banach space will be
the central notion for all following results. Computable metric spaces have
been used in the literature at least since Lacombe [Lac59]. Restricted to com-
putable points they have also been studied by various authors [Cĕı62, Šan68,
Kuš84, Mos64, Spr98]. We consider computable metric spaces as special sep-
arable metric spaces but on all points and not only restricted to computable
points [Wei93, Wei00]. Pour-El and Richards have introduced a closely related
axiomatic characterization of sequential computability structures for Banach
spaces [PER89] which has been extended to metric spaces by Mori, Tsujii, and
Yasugi and Washihara [MTY97, WY96].

Before we start with the definition of computable metric spaces we just
mention that we will denote the open balls of a metric space (X, d) by B(x, ε) :=
{y ∈ X : d(x, y) < ε} for all x ∈ X, ε > 0 and correspondingly the closed balls
by B(x, ε) := {y ∈ X : d(x, y) ≤ ε}. Occasionally, we denote complements of
sets A ⊆ X by Ac := X \ A.

Definition 3.1 (Computable metric space) A tuple (X, d, α) is called com-
putable metric space, if

(1) d : X × X → R is a metric on X,

(2) α : N→ X is a sequence which is dense in X,

(3) d ◦ (α × α) : N2 → R is a computable (double) sequence in R.

Here, we tacitly assume that the reader is familiar with the notion of a
computable sequence of reals, but we will come back to that point below.
Occasionally, we will say for short that X is a computable metric space. Obvi-
ously, a computable metric space is especially separable. Given a computable
metric space (X, d, α), its Cauchy representation δX :⊆ Σω → X can be defined
by

δX(01n001n101n2 ...) := lim
i→∞

α(ni)

for all ni such that (α(ni))i∈N converges and d(α(ni), α(nj)) ≤ 2−i for all
j > i (and undefined for all other input sequences). In the following we
tacitly assume that computable metric spaces are represented by their Cauchy
representation. If X is a computable metric space, then it is easy to see that
d : X ×X → R becomes computable (see Proposition 3.2 below). All Cauchy
representations are admissible w.r.t. the corresponding metric topology.
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An important computable metric space is (R, dR, αR) with the Euclidean
metric dR(x, y) := |x−y| and some standard numbering of the rational numbers
Q, as αR〈i, j, k〉 := (i−j)/(k+1). Here, 〈i, j〉 := 1/2(i+j)(i+j+1)+j denotes
Cantor pairs and this definition is extended inductively to finite tuples. For
short we will occasionally write k := αR(k). In the following we assume that
R is endowed with the Cauchy representation δR induced by the computable
metric space given above.1 Occasionally, we will also use the represented space
(Q, δQ) of rational numbers with δQ(p) := αRp(0).

Many important representations can be deduced from computable metric
spaces, but we will also need some differently defined representations. For
instance we will use two further representations ρ<, ρ> of the real numbers,
which correspond to weaker information on the represented real numbers. Here

ρ<(01n001n101n2 ...) = x : ⇐⇒ {q ∈ Q : q < x} = {ni : i ∈ N}
and ρ< is undefined for all other sequences. Thus, ρ<(p) = x, if p is a list of
all rational numbers smaller than x. Analogously, ρ> is defined with “>” in-
stead of “<”. We write R< = (R, ρ<) and R> = (R, ρ>) for the corresponding
represented spaces. The computable numbers in R< are called left-computable
real numbers and the computable numbers in R> right-computable real num-
bers. The representations ρ< and ρ> are admissible w.r.t. to the lower, upper
topology on R, which are induced by the open intervals (q,∞), (−∞, q), re-
spectively.

Computationally, we do not have to distinguish the complex numbers C
from R2. Thus, we can directly define a representation of C by δC := δ2

R. If
z = a + ib ∈ C , then we denote by z := a − ib ∈ C the conjugate complex
number and by |z| :=

√
a2 + b2 the absolute value of z. Alternatively to the

ad hoc definition of δC , we could consider δC as Cauchy representation of a
computable metric space (C , dC , αC ), where αC is a numbering of Q[i], defined
by αC 〈n, k〉 := n+ki and dC (w, z) := |w−z| is the Euclidean metric on C . The
corresponding Cauchy representation is equivalent to δ2

R. In the following we
will consider vector spaces overR, as well as over C . We will use the notation F
for a field which always might be replaced by both, R or C . Correspondingly,
we use the notation (F, dF, αF) for a computable metric space which might
be replaced by both computable metric spaces (R, dR, αR), (C , dC , αC ) defined
above. We will also use the notation QF = range(αF), i.e. QR = Q and
QC = Q[i].

The following proposition characterizes the equivalence class of Cauchy
representations.

1This representation of R can also be defined, if (R, dR, αR) just fulfills (1) and (2) of the
definition above and this leads to a definition of computable real number sequences without
circularity.
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Proposition 3.2 (Characterization of the Cauchy representation) Let
(X, d, α) be a recursive metric space with Cauchy representation δX and let δ
be a further representation of X. Then α : N → X is (δN, δX)–computable and

(1) δ ≤ δX ⇐⇒ d : X × X → R is ([δ, δX], δR)–computable,

(2) δX ≤ δ ⇐⇒ Lim :⊆ XN→ X is (δNX, δ)–computable.

Here Lim :⊆ XN → X, (xn)n∈N 7→ limn→∞ xn denotes the limit operation
of the metric space (X, d), restricted to rapidly converging Cauchy sequences,
i.e. dom(Lim) = {(xn)n∈N : (∀i > j)d(xi, xj) ≤ 2−j and (xn)n∈N converges }. A
proof of the previous characterization can be found in [Bra99b]. We proceed
with a brief discussion of subspaces and product spaces of computable metric
spaces.

Proposition 3.3 (Subspaces) If (X, d, α) is a computable metric space and
A ⊆ X is a subset of X such that there exists a computable sequence f : N → X
which is dense in A, then the subspace (A, d|A×A, f) is a computable metric
space too. The canonical injection A ↪→ X and its inverse are computable.

Here d|A×A denotes the metric d restricted to A×A. Especially, the previous
proposition implies δX|A ≡ δA for the corresponding Cauchy representations.
The proof is straightforward. The next result shows that computable metric
spaces are closed under product in a reasonable way.

Proposition 3.4 (Product spaces) If (X, d, α), (Y, d′, α′) are computable
metric spaces, then the product space (X × Y, d′′, α′′), defined by

d′′((x, y), (x′, y′)) := max{d(x, x′), d′(y, y′)} and α′′〈i, j〉 := (α(i), α′(j)),

is a computable metric space too and the canonical projections of the product
space pr1 : X × Y → X and pr2 : X × Y → Y are computable.

Especially, δX×Y ≡ [δX, δY ] holds for the corresponding Cauchy represen-
tations. For the definition of a computable Banach space it is helpful to have
the notion of a computable vector space which we will define next.

Definition 3.5 (Computable vector space) A represented space (X, δ) is
called a computable vector space (over F), if (X, +, ·, 0) is a vector space over
F such that the following conditions hold:

(1) + : X ×X → X, (x, y) 7→ x + y is computable,

(2) · : F ×X → X, (a, x) 7→ a · x is computable,
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(3) 0 ∈ X is a computable point.

The following proposition lists some examples of computable vector spaces.

Proposition 3.6 (Computable vector spaces) Let (X, δ) be a computable
vector space over F. Then

(1) (F, δF) is a computable vector space over F,

(2) (Xn, δn) is a computable vector space over F,

(3) (XN, δN) is a computable vector space over F.

Let, additionally, (X, δ), (Y, δ′) be admissibly represented second countable T0–
spaces. Then

(4) (C(Y, X), [δ′ → δ]) is a computable vector space over F.

Here we tacitly assume that the vector space operations in product, se-
quence and function spaces are defined componentwise. The proof for the
function space is a straightforward application of evaluation and type conver-
sion. The central definition for the present investigation will be the notion of
a computable normed space.

Definition 3.7 (Computable normed space) A tuple (X, || ||, e) is called
computable normed space, if

(1) || || : X → R is a norm on X,

(2) e : N → X is a fundamental sequence, i.e. its linear span is dense in X,

(3) (X, d, αe) with d(x, y) := ||x−y|| and αe〈k, 〈n0, ..., nk〉〉 :=
∑k

i=0 αF(ni)ei,
is a computable metric space with Cauchy representation δX,

(4) (X, δX) is a computable vector space over F.

If in the situation of the definition the underlying space (X, || ||) is even
a Banach space, i.e. if (X, d) is a complete metric space, then (X, || ||, e) is
called a computable Banach space. If the norm and the fundamental sequence
are clear from the context or locally irrelevant, we will say for short that X
is a computable normed space or a computable Banach space. We will al-
ways assume that computable normed spaces are represented by their Cauchy
representations, which are admissible w.r.t. the norm topology. If X is a com-
putable normed space, then || || : X → R is a computable function. Of course,
all computable Banach space are separable. In the following proposition a
number of computable Banach spaces are defined.



12 Computable Metric and Banach Spaces

Proposition 3.8 (Computable Banach spaces) Let p ∈ R be a computable
real number with 1 ≤ p < ∞ and let a < b be computable real numbers. The
following spaces are computable Banach spaces over F.

(1) (Fn , || ||p, e) and (Fn , || ||∞, e) with

• ||(x1, x2, ..., xn)||p := p

√
n∑

k=1

|xk|p and

||(x1, x2, ..., xn)||∞ := max
k=1,...,n

|xk|,

• ei = e(i) = (ei1, ei2, ..., ein) with eik :=

{
1 if (∃j) i = jn + k
0 else

.

(2) (`p, || ||p, e) with

• `p := {x ∈ FN : ||x||p < ∞},

• ||(xk)k∈N||p := p

√
∞∑

k=0

|xk|p,

• ei = e(i) = (eik)k∈N with eik :=

{
1 if i = k
0 else

.

(3) (Lp, || ||p, e) with

• Lp := {[f ] : f : [0, 1] → F measurable and ||[f ]||p < ∞},
• [f ] := {g : [0, 1] → F : g measurable and ||[f − g]||p = 0},

• ||[f ]||p := p

√
1∫
0

|f(t)|pdt,

• ei = e(i) = [t 7→ ti].

(4) (C[a, b], || ||, e) with

• C[a, b] := {f : [a, b] → F : f continuous},
• ||f || := max

t∈[a,b]
|f(t)|,

• ei(t) = e(i)(t) = ti.

(5) (C(n)[a, b], || ||(n), e) with

• C(n)[a, b] := {f : [a, b] → F : f n–times continuously differentiable},
• ||f ||(n) :=

n∑
i=0

max
t∈[a,b]

|f (i)(t)|,

• ei(t) = e(i)(t) = ti.
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We leave it to the reader to check that these spaces are actually computable
Banach spaces. For the case of Lp, confer e.g. [PER89, ZZ99, Wei00]. If not
stated differently, then we will assume that (Fn , || ||) is endowed with the
maximum norm || || = || ||∞. It is known that the Cauchy representation δC[a,b]

of C[a, b] = C([a, b],R) is equivalent to [δ[a,b] → δR], where δ[a,b] denotes the
restriction of δRot [a, b] (cf. Lemma 6.1.10 in [Wei00]). In the following we will
often utilize the sequence spaces `p to construct counterexamples. Since we also
want to use some non-separable normed spaces (which cannot be computable
by definition) we give some ad hoc definitions for representations of these
spaces. Especially, we will deal with the space of bounded linear functions and
the space of bounded sequences.

Definition 3.9 (Further normed spaces) Let (X, || ||), (Y, || ||′) be com-
putable normed spaces.

(1) Let `∞ := {x ∈ FN : ||x||∞ < ∞} be endowed with the supremum norm
||(xk)k∈N||∞ := supk∈N |xk| and the representation δ`∞, defined by

δ`∞〈p, q〉 = x : ⇐⇒ δNF (p) = x and δR(q) = ||x||∞.

(2) Let B(N, X) := {x ∈ XN : ||x|| < ∞} be endowed with the supremum
norm ||(xk)k∈N|| := supk∈N ||xk|| and the representation δB(N,X), defined
by

δB(N,X)〈p, q〉 = x : ⇐⇒ δNX(p) = x and δR(q) = ||x||.

(3) Let B(X, Y ) := {T ∈ C(X, Y ) : T linear} be endowed with the operator
norm ||T || := sup||x||=1 ||Tx||′ and the representation δB(X,Y ), defined by

δB(X,Y )〈p, q〉 = T : ⇐⇒ [δX → δY ](p) = T and δR(q) = ||T ||.

Since the space B(N, X) in (2) always occurs which N as source space which
will not be considered as linear space, it cannot be confused with the space
B(X, Y ) in (3). These definitions are put into a more general framework in
Section 15. There it is proved that these spaces are computable Banach spaces
in a generalized sense. If X is a computable normed space, then we will use
δX ′ := δB(X,F) as standard representation for the dual space X ′ := B(X, F),
endowed with the operator norm.

We close this section with a brief discussion of subspaces and product spaces
of computable normed spaces. The results can essentially be derived from the
corresponding results on metric spaces, i.e. Propositions 3.3 and 3.4.
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Proposition 3.10 (Subspaces) If (X, || ||, e) is a computable normed space
and A ⊆ X is a linear subspace of X such that there exists a computable
sequence f : N → X whose linear span is dense in A, then the subspace
(A, || ||A, f) is a computable normed space too and the canonical injection
A ↪→ X and its inverse are computable.

Here || ||A denotes the norm || || restricted to A. The proof is straightfor-
ward. Finally, we mention that computable normed spaces are closed under
product in a reasonable way.

Proposition 3.11 (Product spaces) If (X, || ||, e), (Y, || ||′, e′) are com-
putable normed spaces, then the product space (X × Y, || ||′′, e′′), defined by

||(x, y)||′′ := max{||x||, ||y||′} and e′′〈i, j〉 := (e(i), e′(j)),

is a computable normed space too and the canonical projections of the product
space pr1 : X × Y → X and pr2 : X × Y → Y are computable.

4 Hyperspaces of Open and Closed Subsets

Since one of our goals is to investigate the Open Mapping Theorem and the
Closed Graph Theorem, we have to compute with open and closed sets. There-
fore we need representations of the hyperspace O(X) of open subsets and the
hyperspace A(X) of closed subsets of X. Such representations have been stud-
ied in the Euclidean case in [BW99, Wei00] and for the metric case in [BP00].

Definition 4.1 (Hyperspace of open subsets) Let (X, d, α) be a compu-
table metric space. We endow the hyperspace O(X) := {U ⊆ X : U open} of
open subsets with the representation δO(X), defined by

δO(X)(01
〈n0,k0〉01〈n1 ,k1〉01〈n2,k2〉...) :=

∞⋃
i=0

B(α(ni), ki).

Any representation of the hyperspace of open subsets induces a represen-
tation of the hyperspace of closed subsets. However, in the closed case we will
use a further representation and a combination of both.

Definition 4.2 (Hyperspace of closed subsets) Let (X, d, α) be a com-
putable metric space. We endow the hyperspace A(X) := {A ⊆ X : A closed}
of closed subsets with the representation δ<

A(X), defined by

δ<
A(X)(01

〈n0,k0〉01〈n1,k1〉01〈n2,k2〉...) = A

: ⇐⇒ {(n, k) : A ∩ B(α(n), k) 6= ∅} = {(ni, ki) ∈ N2 : i ∈ N},
and with the representation δ>

A(X), defined by δ>
A(X)(p) := X \ δO(X)(p).
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Whenever we have two representations δ, δ′ of some set, we can define the
infimum δ u δ′ of δ and δ′ by (δ u δ′)〈p, q〉 = x : ⇐⇒ δ(p) = x and δ′(q) = x.
We use the short notations A< = A<(X) = (A<(X), δ<

A(X)), A> = A>(X) =

(A>(X), δ>
A(X)) and A = A(X) = (A(X), δ<

A(X) u δ>
A(X)) for the corresponding

represented spaces. For the computable points of these spaces special names
are used.

Definition 4.3 (Recursively enumerable and recursive sets) Let X be
a computable metric space and let A ⊆ X be a closed subset.

(1) A is called r.e. closed, if A is a computable point in A<(X),

(2) A is called co-r.e. closed, if A is a computable point in A>(X),

(3) A is called recursive closed, if A is a computable point in A(X).

Correspondingly, an open set U ⊆ X is called r.e., co-r.e., recursive open, if
its complement X \ U is a co-r.e., r.e., recursive closed set, respectively.

These definitions generalize the classical notions of r.e. and recursive sets,
since a set A ⊆ N, considered as a closed subset of R, is r.e., co-r.e., recursive
closed, if and only if it has the same property in the classical sense as a subset
of N [BW99]. We close this section with some helpful results on hyperspaces,
which follow directly from results in [BP00]. The first result states that we can
represent open subsets by preimages of continuous functions. It is an effective
version of the statement that open subsets of metric spaces coincide with the
functional open subsets.

Proposition 4.4 (Functional open subsets) Let X be a computable met-
ric space. The map

Z : C(X,R) → O(X), f 7→ X \ f−1{0}
is computable and admits a computable right-inverse O(X)� C(X,R).

The next result can be considered as an effective version of the statement
that closed subsets of separable metric spaces are separable again. Here and
in the following A denotes the topological closure of a subset A ⊆ X of some
topological space X.

Proposition 4.5 (Separable closed subsets) Let X be a computable met-
ric space. The mapping

range : XN→ A<(X), (xn)n∈N 7→ {xn : n ∈ N}
is computable and if X is complete, then it admits a computable multi-valued
partial right-inverse ⊆ A<(X)� XN, defined for all non-empty closed subsets.
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The next result especially shows that closed subsets A ⊆ X of a metric
space (X, d) with a computable distance function

dA : X → R, x 7→ inf
y∈X

d(x, y)

are always recursive closed.

Proposition 4.6 (Located closed subsets) Let X be a computable metric
space. The mapping

L :⊆ C(X,R) → A(X), dA 7→ A

with dom(L) := {f ∈ C(X,R) : (∃A ∈ A(X))f = dA} is computable.

The inverse is computable only under additional conditions such as local
compactness. For a more comprehensive discussion of hyperspaces of com-
putable metric spaces, see [BP00]. We mention the fact that for normed space
B(x, ε) = B(x, ε) holds, while in the metric case only “⊆” holds in general.

5 The Open Mapping Theorem

In this section we will study the effective content of the Open Mapping The-
orem, which we formulate first. The proof of this theorem and most of the
other Banach space principles which we will study can be found in [GP65] or
other textbooks on functional analysis.

Theorem 5.1 (Open Mapping Theorem) Let X, Y be Banach spaces. If
T : X → Y is a linear surjective and bounded operator, then T is open, i.e.
T (U) ⊆ Y is open for any open U ⊆ X.

Whenever T : X → Y is an open operator, we can associate the function

O(T ) : O(X) → O(Y ), U 7→ T (U)

with it. Now we can ask for three different computable versions of the Open
Mapping Theorem. If T : X → Y is a linear computable and surjective
operator, does the following hold true:

(1) U ⊆ X r.e. open =⇒ T (U) ⊆ Y r.e. open?

(2) O(T ) : O(X) → O(Y ), U 7→ T (U) is computable?

(3) T 7→ O(T ) is computable?
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In the following we will see that questions (1) and (2) can be answered in
the affirmative, while question (3) has to be answered in the negative. The
key tool for the positive results will be Theorem 5.3 on effective openness. As
a preparation of this theorem we will prove that, given an open set U ∈ O(X)
and a point x ∈ U , we can effectively find some neighborhood of x which is
included in U . This statement is made precise by the following lemma.

Lemma 5.2 Let (X, d, α) be a computable metric space. There exists a com-
putable multi-valued operation R :⊆ X × O(X) � N such that for any open
U ⊆ X and x ∈ U there exists some k ∈ R(x, U) and B(x, k) ⊆ U holds for
all such k.

Proof. Given a sequence 〈ni, ki〉i∈N of natural numbers such that

U =

∞⋃
i=0

B(α(ni), ki)

and a sequence (mi)i∈N such that d(α(mi), α(mj)) ≤ 2−j for all i > j and x :=
limi→∞ α(mi) ∈ U , there exist i, j ∈ N such that d(α(ni), α(mj))+2−j < ki and
thus we can effectively find i, j, k ∈ N such that d(α(ni), α(mj))+ 2−j + k < ki

and k > 0. Then d(x, y) < k implies

d(α(ni), y) ≤ d(α(ni), α(mj)) + d(α(mj), x) + d(x, y)

< d(α(ni), α(mj)) + 2−j + k

< ki

for all y ∈ X and thus B(x, k) ⊆ B(α(ni), ki) ⊆ U . 2

Our next theorem on effective openness states that T : X → Y is com-
putable, if and only if O(T ) : O(X) → O(Y ) is computable, provided that T
is a linear and bounded operator and X, Y are computable normed spaces.

Theorem 5.3 (Effective openness) Let X, Y be computable normed spaces
and let T : X → Y be a linear and bounded operator. Then the following
conditions are equivalent:

(1) T : X → Y is open and computable,

(2) O(T ) : O(X) → O(Y ), U 7→ T (U) is well-defined and computable.

Proof. We consider the computable normed spaces (X, || ||, e) and (Y, || ||′, e′)
with the dense sequences α := αe : N → X, β := αe′ : N → Y according to
Definition 3.7. Since no confusion is to be expected, we will also write || ||
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instead of || ||′.

“(1)=⇒(2)” If T is open, then O(T ) is well-defined and we have to prove that
O(T ) is computable if T is computable. We separate the proof into two parts
(a) and (b). In (a) we use the fact that T is linear and open and in (b) we use
the fact that T is computable.

(a) We prove that there exists a computable operation R :⊆ X ×O(X) � N

such that for any open U ⊆ X and x ∈ U there exists some k ∈ R(x, U) and
B(Tx, k) ⊆ T (U) and k > 0 for all such k. Since T is open and linear, there
exists some rational r > 0 such that B(0, r) ⊆ T (B(0, 1)). Given U ∈ O(X)
and x ∈ U we can effectively find some n ∈ N with ε := n > 0 such that
B(x, ε) ⊆ U by Lemma 5.2 and some k ∈ N with k = εr. It follows by
linearity of T

B(Tx, k) = ε

(
B(0, r) +

1

ε
Tx

)
⊆ ε

(
TB(0, 1) +

1

ε
Tx

)
= TB(x, ε) ⊆ T (U).

Thus, there exists a Turing machine M which computes a realization of R.

(b) Let M ′ be a Turing machine which computes a (δX, δY )–realization of
T . We will construct a Turing machine M ′′ which computes a (δO(X), δO(Y ))–
realization of O(T ). The set

W := {01n001n1 ...01nl0 ∈ Σ∗ : l ∈ N and ||α(ni) − α(nj)|| < 2i for i < j ≤ l}

is an r.e. subset of Σ∗ with δX(WΣω) = X. Let p ∈ dom(δO(X)) with U :=
δO(X)(p).

Now machine M ′′ on input p searches systematically for some finite word
w = 01n001n1 ...01ni0 ∈ W such that machine M with input 〈w0ω, p〉 produces
some (encoded) output m ∈ N and M ′ with input w0ω some output v, both
after reading only w or some finite prefix of it, such that the following holds:
if 01k001k1 ...01kj0 is the longest prefix of v which ends with 0, then 2−j+2 < m
and α(ni) ∈ U . Whenever machine M ′′ finds such a word w, then it writes
01〈kj ,k〉 with k = 2−j+1 on the output tape.

If this happens, then B(Tx, m) ⊆ T (U) and ||y−Tx|| ≤ 2−j with x := α(ni)
and y := β(kj). Thus, ||z − y|| < k implies

||z − Tx|| ≤ ||z − y|| + ||y − Tx|| < k + 2−j < m

for all z ∈ Y and thus B(β(kj), k) ⊆ B(Tx, m) ⊆ T (U). Hence, we obtain
δO(Y )(q) ⊆ T (U) for the output q of M ′′, provided that this output q is infinite.
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It remains to prove that M ′′ on input p actually produces an infinite output
q and that T (U) ⊆ δO(Y )(q). Thus, let y ∈ T (U). Then there is some x ∈ U
with Tx = y and some r ∈ dom(δX) with δX(r) = x such that r = 01n001n1 ...
has infinitely many prefices in W and α(ni) ∈ U for all i; especially there is
one such prefix w′ ∈ W of r such that M on input 〈w′0ω, p〉 stops with output
m ∈ N while reading w′ or some finite prefix of it and there is some prefix
w ∈ W of r which is longer than w′ such that M ′ on input w0ω writes some
output 01k001k1 ...01kj0 with 2−j+2 < m while reading w or some finite prefix
of it. Finally, M ′′ will find such a word w and write 01〈kj ,k〉 with k = 2−j+1

on the output tape. We obtain y ∈ B(β(kj), k) since ||β(kj) − y|| ≤ 2−j < k.
Moreover, M ′′ will find infinitely many such words w and produce an infinite
output q with T (U) ⊆ δO(Y ).

“(2)=⇒(1)” Now let O(T ) be well-defined and computable and let M be a
Turing machine which computes a realization of O(T ). Then T is open since
O(T ) is well-defined. Since T is bounded, there exists a rational bound s > 0
such that ||Tx|| ≤ s||x|| for all x ∈ X and some j ∈ N such that 2j > s. We
construct a Turing machine M ′ which computes a (δX, δY )–realization of T .
Given some input p = 01n001n101n20... with x := δX(p), machine M ′ works
in steps i = 0, 1, 2, ... as follows: in step i machine M ′ starts machine M
with input q = 01〈ni+j+2 ,ki〉01〈ni+j+2 ,ki〉01〈ni+j+2 ,ki〉0... where ki := 2−i−j−2 and
simulates M until it writes the first word 01〈n,k〉0. Then M ′ writes 01n on its
output tape and continues with the next step i + 1.

Since δO(X)(q) = B(α(ni+j+2), ki), M produces an output r with

δO(Y )(r) = O(T )(δO(X)(q)) = TB(α(ni+j+2), ki).

Thus, for any subword 01n which is written by M ′ in step i on its output tape,
we obtain β(n) ∈ TB(α(ni+j+2), ki). Since ||x− α(ni+j+2)|| ≤ ki, it follows

||β(n)− Tx|| ≤ ||β(n) − Tα(ni+j+2)|| + ||Tα(ni+j+2) − Tx|| ≤ 2ski < 2−i−1

and hence δY (t) = Tx holds for the infinite output t of M ′. 2

Now we can directly conclude a computable version of the Open Mapping
Theorem as a corollary of the previous theorem and the classical Open Mapping
Theorem.

Corollary 5.4 (Computable Open Mapping Theorem) Let X, Y be
computable Banach spaces and let T : X → Y be a linear computable operator.
If T is surjective, then T is open and O(T ) : O(X) → O(Y ) is computable.
Especially, T (U) ⊆ Y is r.e. open for any r.e. open set U ⊆ X.
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This version of the Open Mapping Theorem leaves open the question
whether the map T 7→ O(T ) itself is computable. Actually, a careful look
at the proof of direction “(1)=⇒(2)” of Theorem 5.3 shows that the first step
(a) is not effective in T . There, the existence of a rational number r > 0
is assumed such that B(0, r) ⊆ TB(0, 1). Hence, an effective version of this
proof only shows that the map (T, r) 7→ O(T ) is computable. A similar con-
sideration applies to the direction “(2)=⇒(1)”, where an upper bound s on
the operator norm ||T || := sup||x||=1 ||Tx|| has been used. We formulate both
uniform directions of the previous theorem a bit more precisely.

Theorem 5.5 Let X, Y be computable normed spaces.

(1) The map2

Ω : (T, r) 7→ O(T )

with dom(Ω) := {(T, r) : T : X → Y is linear bounded and open and
B(0, r) ⊆ TB(0, 1)} is ([[δX → δY ], δQ], [δO(X) → δO(Y )])–computable.

(2) The map
Ω′ : (O(T ), s) 7→ T

with dom(Ω′) := {(O(T ), s) : T : X → Y is linear bounded and open and
||T || ≤ s} is ([[δO(X) → δO(Y )], δQ], [δX → δY ])–computable.

The proof is essentially the same as that of Theorem 5.3 with an addi-
tional application of the evaluation and type conversion technique, applied to
[δX → δY ], [δO(X) → δO(Y )], respectively (more precisely, one has to apply the
same technique which has been used for the proof of the evaluation and type
conversion property, that is a certain smn- and utm-Theorem, cf. Theorem
2.3.13 in [Wei00]). Obviously, the previous theorem holds true for Banach
spaces with “surjective” instead of “open”, which would be a stronger com-
putable version of the Open Mapping Theorem, but we do not formulate this
version of the theorem here.

Now the question appears whether one can prove a uniform version of the
Open Mapping Theorem, i.e. whether the map T 7→ O(T ) is computable with-
out the radius r as additional input information. The answer is “no”, even
restricted to Banach or Hilbert spaces and to bijective mappings T as we will

2We do not mention the functionality of Ω, since this is a bit complicated: if δ, δ′ are
admissible representations of T0–spaces with countable bases X, Y , then [δ → δ′] is an
admissible representation of the set C(X, Y ) of continuous functions X → Y (w.r.t. the
compact-open topology, if X is even a Hausdorff space). But if X is not locally compact,
then it might happen that O(X) has no countable base. In such cases we can only assume
that [δO(X) → δO(Y )] is a representation of the set of sequentially continuous functions
O(X) → O(Y ) (cf. [Sch00]).
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show in the following. For the proof we introduce a special type of opera-
tors which will serve as a standard counterexample during our investigation.
Because of this universality we introduce a specific name.

Lemma 5.6 (Diagonal operators) Let p ≥ 1 be a computable real number
or p = ∞ and let a ∈ (0, 1]. Then Ta : `p → `p is called a diagonal operator
of a, if there exists a decreasing sequence (an)n∈N of real numbers with a0 = 1
and a = infn∈Nan > 0, such that

Ta(xk)k∈N= (akxk)k∈N.

Each diagonal operator Ta : `p → `p of a shares the following properties:

(1) Ta : `p → `p is linear, bounded and bijective,

(2) ||Ta|| = 1 and ||T−1
a || = 1

a
,

(3) B(0, r) ⊆ TaB(0, 1) implies r ≤ a for all r > 0.

Proof. (1) Obviously, Ta is linear. In case 1 ≤ p < ∞ we obtain

||Ta(xk)k∈N||p = p

√√√√ ∞∑
k=0

|akxk|p ≤ a0 · p

√√√√ ∞∑
k=0

|xk|p = ||(xk)k∈N||p

and in case p = ∞ we obtain

||Ta(xk)k∈N||∞ = sup
k∈N

|akxk| ≤ a0 · sup
k∈N

|xk| = ||(xk)k∈N||∞

Thus, ||Ta|| ≤ 1 and Ta is bounded in both cases. Moreover, Ta is obviously
injective since an > 0 for all n ∈ N and Ta is surjective since (yk)k∈N ∈ `p

implies ||(yk)k∈N||p < ∞ and thus

∣∣∣∣
∣∣∣∣
(

1

ak
yk

)
k∈N

∣∣∣∣
∣∣∣∣
p

= p

√√√√ ∞∑
k=0

∣∣∣∣ 1

ak
yk

∣∣∣∣p ≤ 1

a
· ||(yk)k∈N||p < ∞

in case 1 ≤ p < ∞ and analogously ||( 1
ak

yk)k∈N||∞ ≤ 1
a
· ||(yk)k∈N||∞ < ∞ and

hence ( 1
ak

yk)k∈N ∈ `p and Ta(
1
ak

yk)k∈N = (yk)k∈N in all cases. Moreover, this

already shows ||T−1
a || ≤ 1

a
.

(2) Now let eik ∈ F be defined as in Proposition 3.8(2). Then ei := (eik)k∈N ∈ `p

is a unit vector for each i ∈ N and Ta(ei) = aiei and T−1
a (ei) = 1

ai
ei for all
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i ∈ N. This proves ||Ta|| ≥ ai and ||T−1
a || ≥ 1

ai
for all i ∈ N and thus altogether

||Ta|| = a0 = 1 and ||T−1
a || = 1

a
.

(3) Finally, let B(0, r) ⊆ TaB(0, 1). Now sei ∈ B(0, r) for all positive s < r
and i ∈ N and hence T−1

a (sei) = s
ai

ei ∈ B(0, 1) and thus s < ai for all positive
s < r and i ∈ N. Hence, r ≤ ai for all i ∈ N and thus r ≤ a = infi∈Nai. 2

The next proposition shows that we can effectively find a diagonal operator
Ta : `p → `p for any given a ∈ R> with 0 < a ≤ 1.

Proposition 5.7 (Diagonal operator) Let p ≥ 1 be a computable real num-
ber. There exists a computable multi-valued operation τ :⊆ R> � B(`p, `p)
such that for any a ∈ R> with a ∈ (0, 1] there exists some Ta ∈ τ (a) and all
such Ta : `p → `p are diagonal operators of a.

Proof. Given a real number a ∈ R> with a ∈ (0, 1], we can effectively find
a decreasing sequence (an)n∈N of rational numbers an ∈ Q such that a0 = 1
and a = infn∈Nan. We define a diagonal operator Ta : `p → `p of a by
Ta(xk)k∈N := (akxk)k∈N for all (xk)k∈N ∈ `p. Given some x = (xk)k∈N and a
precision m ∈ N we can effectively find some n ∈ N and numbers q0, ..., qn ∈ QF

such that ||∑n
i=0 qiei−x||p < 2−m. Since ||Ta|| = 1 by Lemma 5.6(2), it follows∣∣∣∣∣

∣∣∣∣∣Ta

(
n∑

i=0

qiei

)
− Ta(x)

∣∣∣∣∣
∣∣∣∣∣
p

≤ ||Ta|| ·
∣∣∣∣∣
∣∣∣∣∣

n∑
i=0

qiei − x

∣∣∣∣∣
∣∣∣∣∣
p

< 2−m

By linearity of Ta we obtain Ta(
∑n

i=0 qiei) =
∑n

i=0 qiTa(ei) =
∑n

i=0 qiai and
thus we can evaluate Ta effectively up to any given precision m. Using type
conversion we can actually prove that there exists an operation τ with the
desired properties. Here it should be mentioned that ||Ta|| = 1 holds for all
diagonal operators Ta, and thus we can translate [δ`p → δ`p] to δB(`p,`p) for such
operators. 2

Now we can prove the promised negative result on the mapping T 7→ O(T ).

Theorem 5.8 Let p ≥ 1 be a computable3 real number. Then the mapping
T 7→ O(T ), defined for linear, bounded and bijective operators T : `p → `p with
||T || = 1, is not continuous.

3Here and in the following, discontinuity results also hold true for non-computable p.
But in order to keep the proofs as simple as possible, we only formulate the versions for
computable p. Otherwise we had to add pure continuity versions for arbitrary p ≥ 1 of those
positive results, like Proposition 5.7, which are used to derive discontinuity statements.
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Proof. Let us assume that the mapping T 7→ O(T ), defined for linear,
bounded and bijective operators T : `p → `p with ||T || = 1 would be con-
tinuous, more precisely, ([δ`p → δ`p], [δO(`p) → δO(`p)])–continuous. Then by
the evaluation property, E : T 7→ TB(0, 1) is ([δ`p → δ`p], δO(`p))–continuous.
Now the operation S :⊆ R> � N, defined by S(a) := R(0, E ◦ τ (a)), where
R :⊆ `p × O(`p) � N is the computable operation from Lemma 5.2 and
τ :⊆ R>� C(`p, `p) is the computable operation from Proposition 5.7, is con-
tinuous too. Thus, for any positive a ∈ R>, there exists some n ∈ S(a) and
for all such n we obtain 0 < n ≤ a by construction of τ and Lemma 5.6(3).
In other words, S determines a positive lower rational bound for any a ∈ R>

with 0 < a ≤ 1. It is straightforward to see that such a continuous operation
S cannot exist. 2

Although the mapping T 7→ O(T ) is discontinuous, we know by Theo-
rem 5.3 that O(T ) : O(`p) → O(`p) is computable whenever T : `p → `p is
computable. On the one hand, this guarantees that T 7→ O(T ) is not too dis-
continuous [Bra99a]. On the other hand, we have to use sequences to construct
a computable counterexample for the uniform version of the Open Mapping
Theorem. Therefore we will use the following lemma which can be proved by
an easy diagonalization argument.

Lemma 5.9 There exists a computable sequence (an)n∈N of positive right-
computable real numbers such that for any computable function f : N → N

there exists some i ∈ N such that 2−f(i) > ai.

Proof. We use some total Gödel numbering ϕ : N → P of the set of partial
computable functions P := {f :⊆ N → N : f computable} to define

an :=

{
2−k−1 if ϕn(n) = k
1 if ϕn(n) is undefined

for all n, k ∈ N. Then (an)n∈N is a computable sequence of positive right-
computable real numbers. Now let f : N → N be some total computable
function. Then there exists some i ∈ N such that ϕi = f and we obtain
2−f(i) > 2−ϕi(i)−1 = ai. 2

Using the computable sequence (an)n∈N of right-computable real numbers
constructed in this lemma and the computable operation τ :⊆ R>� B(`p, `p)
from Proposition 5.7, we directly obtain a computable sequence (Tn)n∈N of
operators Tn ∈ τ (an), i.e. Tn is a diagonal operator of an, with the following
property.
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Corollary 5.10 Let p be a computable real number with p ≥ 1. There exists
a computable sequence (Tn)n∈N in B(`p, `p) of linear computable and bijective
operators Tn : `p → `p such that (TnB(0, 1))n∈N is a sequence of r.e. open
subsets of `p which is not computable.

If the sequence (TnB(0, 1))n∈N would be computable, then the computable
operation R :⊆ `p × O(`p) � N from Lemma 5.2 would yield a computable
sequence (rn)n∈N of rationals with rn ∈ R(0, TnB(0, 1)) such that 0 < rn ≤ an

by Lemma 5.6(3). But this contradicts Lemma 5.9.

6 Banach’s Inverse Mapping Theorem

In this section we want to study computable versions of Banach’s Inverse Map-
ping Theorem. Again we start with a formulation of the classical theorem.

Theorem 6.1 (Banach’s Inverse Mapping Theorem) Let X, Y be
Banach spaces and let T : X → Y be a linear bounded operator. If T is
bijective, then T−1 : Y → X is bounded.

It is clear that linearity is an essential property in this theorem since it
is well-known that there are continuous bijections with discontinuous inverse.
Similarly as in case of the Open Mapping Theorem we have two canonical
candidates for an effective version of this theorem. We can ask whether for
linear bounded and bijective operators T : X → Y the following holds true:

(1) T computable =⇒ T−1 computable?

(2) T 7→ T−1 is computable?

Again we will see that the first question has to be answered in the affirmative
and the second question has to be answered in the negative. Analogously as
we have used Theorem 5.3 on effective openness to prove the computable Open
Mapping Theorem 5.4, we will use Theorem 6.2 on effective continuity to prove
the computable version of Banach’s Inverse Mapping Theorem. The first part
of the proof is based on Proposition 4.4.

Theorem 6.2 Let X, Y be computable metric spaces and let T : X → Y be a
function. Then the following is equivalent:

(1) T : X → Y is computable,

(2) O(T−1) : O(Y ) → O(X), V 7→ T−1(V ) is well-defined and computable.
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Proof. “(1)=⇒(2)” If T : X → Y is computable, then it is continuous
and hence O(T−1) is well-defined. Given a function f : Y → R such that
V = Y \ f−1{0}, we obtain

T−1(V ) = T−1(Y \ f−1{0}) = X \ (fT )−1{0}.

Using Proposition 4.4 and the fact that composition

◦ : C(Y,R)× C(X, Y ) → C(X,R), (f, T ) 7→ f ◦ T

is computable (which can be proved by evaluation and type conversion), we
obtain that O(T−1) is computable.

“(2)=⇒(1)” We consider the computable metric spaces (X, d, α) and (Y, d′, β).
We note that T is continuous, if O(T−1) is well-defined. Given a Turing
machine M which computes a realization of O(T−1), we construct a Turing
machine M ′ which computes a realization of T . The machine M ′ with input
p ∈ dom(δX) works in steps k = 0, 1, 2, ... as follows. In step k machine
M ′ simultaneously tests all values n ∈ N until some value is found with the
following property: machine M with input 01〈n,m〉01〈n,m〉01〈n,m〉0... with m =
2−k produces an output with subword 01〈i,j〉0 such that x = δX(p) ∈ B(α(i), j).
As soon as such a subword is found, M ′ writes 01n on the output tape.

If this happens, i.e. if M ′ writes 01n on its output tape, then we obtain
Tx ∈ B(β(n), 2−k) since x ∈ B(α(i), j) ⊆ T−1(B(β(n), m)). Moreover, M ′

actually produces an infinite output q, since for any k ∈ N there is some
n ∈ N such that Tx ∈ B(β(n), 2−k) and thus x ∈ T−1(B(β(n), 2−k)) and
consequently M on input 01〈n,m〉01〈n,m〉0... has to produce some output with
subword 01〈i,j〉0 and x ∈ B(α(i), j). It follows δY (q) = Tx. 2

Now we note the fact that for Banach spaces X, Y and bijective linear
operators T : X → Y , the operation O(T−1), associated with T according
to the previous theorem, is the same as the operation O(S), associated with
S = T−1 according to Corollary 5.4. Thus, we can directly conclude the
following computable version of the Inverse Mapping Theorem as a corollary
of Theorem 6.2 and Corollary 5.4.

Corollary 6.3 (Computable Inverse Mapping Theorem) Let X, Y be
computable Banach spaces and let T : X → Y be a linear computable operator.
If T is bijective, then T−1 : Y → X is computable too.

Analogously to the Open Mapping Theorem, we want to study the question
whether a uniform computable version of Banach’s Inverse Mapping Theorem
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holds true. Unfortunately, the answer is “no” in this case too, i.e. the mapping
T 7→ T−1 is discontinuous. Before proving this negative result we formulate a
uniform version of Theorem 6.2. This version can be proved correspondingly
to Theorem 6.2 simply by using evaluation and type conversion (certain smn-
and utm-Theorems, respectively).

Theorem 6.4 (Effective Continuity) Let X, Y be computable metric spaces.
Then the total map

ω : T 7→ O(T−1),

defined for all continuous T : X → Y , is ([δX → δY ], [δO(Y ) → δO(X)])–
computable and its inverse ω−1 is computable in the corresponding sense too.

Using this positive result, applied to T−1, we can transfer our negative
results on the Open Mapping Theorem to the Inverse Mapping Theorem. As a
corollary of the previous Theorem 6.4 and Theorem 5.8 we obtain the following
result.

Corollary 6.5 Let p ≥ 1 be a computable real number. The inversion map
T 7→ T−1, defined for linear bounded and bijective operators T : `p → `p with
||T || = 1, is not continuous.

This holds true w.r.t. ([δ`p → δ`p ], [δ`p → δ`p])–continuity, as well as w.r.t.
(δB(`p,`p), [δ`p → δ`p])– and (δB(`p,`p), δB(`p,`p))–continuity. On the other hand, a
combination of this corollary with the statement on the inverse ω−1 in The-
orem 6.4 yields the following additional negative result which corresponds to
Theorem 5.5(2).

Corollary 6.6 Let p ≥ 1 be a computable real number. The map O(T ) 7→ T ,
defined for linear bounded and bijective operators T : `p → `p with ||T || = 1, is
not continuous.

Correspondingly, we can construct a computable counterexample for the
uniform version of the Inverse Mapping Theorem. As a corollary of Theorem
6.4, applied to T−1

n from Corollary 5.10 we obtain the following counterexam-
ple.

Corollary 6.7 For any computable real number p ≥ 1 there exists a com-
putable sequence (Tn)n∈N in B(`p, `p) of linear computable and bijective oper-
ators Tn : `p → `p, such that (T−1

n )n∈N is a sequence of computable operators
T−1

n : `p → `p which is not computable in C(`p, `p).
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We can even assume that ||Tn|| = 1 for all n ∈ N. After this negative
result, which shows that the mapping T 7→ T−1 is not computable, we want
to discuss which additional input information on T could help to establish
a uniform computable version of Inverse Mapping Theorem. Theorem 5.5
together with Theorem 6.4 constitute two formally different ways to prove
such a result, which correspond to the compositions

(T, r)
Ω7−→ O(T )

ω−17−→ T−1 and (T, s)
ω×id7−→ (O(T−1), s)

Ω′7−→ T−1.

In the first case, as additional input information a rational radius r > 0 is
required such that B(0, r) ⊆ TB(0, 1) and in the second case a rational bound
s > 0 such that ||T−1|| ≤ s. It is easy to see that both types of additional input
information are equivalent in this situation. On the one hand, this follows by
applying the following lemma to the inverse T−1.

Lemma 6.8 Let X, Y be normed spaces and let T : X → Y be a linear bounded
map. Then

B(0, r) ⊆ T−1B(0, 1) =⇒ ||T || ≤ 1

r

holds for all r > 0.

Proof. By linearity and continuity of T we obtain

B(0, r) ⊆ T−1B(0, 1) =⇒ TB(0, 1) ⊆ B

(
0,

1

r

)

=⇒ TB(0, 1) ⊆ B

(
0,

1

r

)
=⇒ ||T || = sup

x∈B(0,1)

||Tx|| ≤ 1

r
.

2

On the other hand, ||T−1|| ≤ s implies T−1B(0, 1) ⊆ B
(
0, 1

r

)
, whenever

s < 1
r
. For completeness we formulate one of the two equivalent uniform

versions of the Inverse Mapping Theorem precisely.

Theorem 6.9 (Inversion) Let X, Y be computable normed spaces. The map

ι : (T, s) 7→ T−1

with dom(ι) := {(T, s) : T : X → Y is linear, bounded and bijective and
||T−1|| ≤ s} is ([[δX → δY ], δQ], [δY → δX])–computable.
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We close this section with an application of the Computable Inverse Map-
ping Theorem 6.3 which shows that any two comparable computable complete
norms are computably equivalent.

Theorem 6.10 Let (X, || ||), (X, || ||′) be computable Banach spaces and let
δ, δ′ be the corresponding Cauchy representations of X. If δ ≤ δ′ then δ ≡ δ′.

Proof. If δ ≤ δ′, then the identity id : (X, || ||) → (X, || ||′) is (δ, δ′)–
computable. Moreover, the identity is obviously linear and bijective. Thus,
id−1 : (X, || ||′) → (X, || ||) is (δ′, δ)–computable by the Computable Inverse
Mapping Theorem. Consequently, δ′ ≤ δ. 2

7 Initial Value Problem

In this section we will discuss an application of the computable version of
Banach’s Inverse Mapping Theorem to the initial value problem of ordinary
linear differential equations. Consider the linear differential equation with
initial values

n∑
i=0

fi(t)x
(i)(t) = y(t) with x(j)(0) = aj for j = 0, ..., n− 1.

Here, x, y : [0, 1] → R are functions, fi : [0, 1] → R are coefficient functions
with fn 6= 0 and a0, ..., an−1 ∈ R are initial values. It is known that for
each y ∈ C[0, 1] and all values a0, ..., an−1 there is exactly one solution x ∈
C(n)[0, 1] of this equation [Heu86]. Given fi, ai and y, can we effectively find
this solution? The positive answer to this question can easily be deduced from
the computable Inverse Mapping Theorem 6.3.

Theorem 7.1 (Initial Value Problem) Let n ≥ 1 be a natural number and
let f0, ..., fn : [0, 1] → R be computable functions with fn 6= 0. The solution
operator

L : C[0, 1] ×Rn → C(n)[0, 1]

which maps each tuple (y, a0, ..., an−1) ∈ C[0, 1] × Rn to the unique function
x = L(y, a0, ..., an−1) with

n∑
i=0

fi(t)x
(i)(t) = y(t) with x(j)(0) = aj for j = 0, ..., n− 1,

is computable.
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Proof. The operator

L−1 : C(n)[0, 1] → C[0, 1] ×Rn, x 7→
(

n∑
i=0

fix
(i), x(0)(0), ..., x(n−1)(0)

)

is obviously linear. Using the evaluation and type conversion property and
the fact that the i–th differentiation operator C(n)[0, 1] → C[0, 1], x 7→ x(i) is
computable for i ≤ n, one can easily prove that L−1 is computable. By the
computable Inverse Mapping Theorem 6.3 it follows that L is computable too.

2

We obtain the following immediate corollary on computability of solutions
of ordinary linear differential equations.

Corollary 7.2 Let n ≥ 1 and let y, f0, ..., fn : [0, 1] → R be computable func-
tions and let a0, ..., an−1 ∈ R be computable real numbers. Then the unique
function x ∈ C(n)[0, 1] with

n∑
i=0

fi(t)x
(i)(t) = y(t) with x(j)(0) = aj for j = 0, ..., n− 1,

is a computable point in C(n)[0, 1]. Especially, x(0), ..., x(n) : [0, 1] → R are
computable functions.

8 The Closed Graph Theorem

In this section we investigate computable versions of the Closed Graph Theo-
rem, which relates properties of an operator T : X → Y with properties of its
graph graph(T ) := {(x, y) ∈ X × Y : Tx = y}.

Theorem 8.1 (Closed Graph Theorem) Let X, Y be Banach spaces and
let T : X → Y be a linear operator. If graph(T ) ⊆ X × Y is closed, then T is
bounded.

Following the classical proof of the Closed Graph Theorem we immediately
obtain a computable version. The proof will mainly be based on Propositions
3.10 and 3.11 on subspaces and product spaces.

Theorem 8.2 (Computable Closed Graph Theorem) Let X, Y be com-
putable Banach spaces and let T : X → Y be a linear operator. If graph(T ) ⊆
X × Y is r.e. closed, then T : X → Y is computable.
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Proof. If X, Y are computable Banach spaces, then X × Y is a computable
Banach space by Proposition 3.11 too. If graph(T ) ⊆ X × Y is an r.e. closed
subset of this product space, then graph(T ) can be considered as computable
subspace of X × Y by Proposition 3.10, which is linear since T is linear. The
function S : graph(T ) → X, (x, y) 7→ x is obviously linear and bijective and
it is computable, since it can be represented as S = pr1 ◦ i with the projec-
tion pr1 : X × Y → X and the injection i : graph(T ) → X × Y . Hence,
S−1 : X → graph(T ) is computable by the computable Inverse Mapping The-
orem 6.3. Thus, the operator T = pr2 ◦ i ◦ S−1 is computable too, since the
projection pr2 : X × Y → Y is computable. 2

The reader should notice that we have effectivized the standard proof of
the Closed Graph Theorem to obtain the computable version. In contrast
to this, the computable versions of the Open Mapping Theorem and the In-
verse Mapping Theorem have been obtained as consequences of the classical
theorems.

Analogously to the Open Mapping Theorem the question appears whether
a uniform version of the computable Closed Graph Theorem can be proved,
which shows that the operation graph :⊆ C(X, Y ) → A<(X × Y ), defined
for linear and bounded operators T : X → Y , has a computable inverse.
Unfortunately, this is not the case, which can be proved using our standard
counterexample. Therefore, we first prove a positive result, which is based on
Proposition 4.5 and 4.4.

Theorem 8.3 (Graph Theorem) Let X, Y be computable metric spaces.
The mapping

graph : C(X, Y ) → A(X × Y ), T 7→ graph(T )

is computable.

Proof. We consider the computable metric spaces (X, d, α), (Y, d′, β). Then,
α : N→ X is a computable function such that range(α) = X. If T : X → Y is
continuous, then S : X → X × Y, x 7→ (x, Tx) is continuous too and because
of continuity of S we obtain that range(Sα) is dense in range(S) = graph(T ).
Using evaluation and type conversion as well as Proposition 4.5, it follows that
graph : C(X, Y ) → A<(X × Y ) is computable.

Now U : X × Y → R, (x, y) 7→ d′(Tx, y) is continuous, since T : X → Y
and the metric d′ : Y × Y → R are continuous and we obtain

U(x, y) = 0 ⇐⇒ d′(Tx, y) = 0 ⇐⇒ Tx = y ⇐⇒ (x, y) ∈ graph(T ).

Thus U−1{0} = graph(T ) and evaluation together with type conversion and
Proposition 4.4 allow to conclude that graph : C(X, Y ) → A>(X × Y ) is
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computable. Altogether, this shows that graph : C(X, Y ) → A(X × Y ) is
computable. 2

Unfortunately, the inverse graph−1 is not continuous in general, even not
for linear bounded and bijective operators T : X → Y and computable Banach
or Hilbert spaces X, Y . As a preparation we prove the following lemma.

Lemma 8.4 Let X, Y be computable metric spaces. The “swap map”

S : A(X × Y ) → A(Y × X), A 7→ {(y, x) ∈ Y × X : (x, y) ∈ A}

is computable.

The proof follows from the obvious fact that the pointwise “swap function”
s : X × Y → Y × X, (x, y) 7→ (y, x) operates on centers of balls, i.e.

sB((x, y), r) = B((y, x), r) = B(s(x, y), r)

for all (x, y) ∈ X ×Y and r > 0, provided that X ×Y and Y ×X are endowed
with the product space structure according to Proposition 3.4.

Theorem 8.5 Let p ≥ 1 be a computable real number. The mapping

graph−1 :⊆ A(`p × `p) → C(`p, `p),

defined for all closed subsets A ⊆ `p×`p such that A = graph(T ) for some linear
bounded and bijective operator T : `p → `p with ||T || = 1, is not continuous.

Proof. Let us assume that graph−1 :⊆ A(`p × `p) → C(`p, `p) would be con-
tinuous in the stated sense. By the previous lemma and the Graph Theorem
8.3 it follows that the inversion I :⊆ C(`p, `p) → C(`p, `p), T 7→ T−1, restricted
to linear bounded and bijective operators T : `p → `p with ||T || = 1, would be
continuous too, since I = graph−1◦S◦graph. This contradicts Corollary 6.5. 2

Using the sequence (T−1
n )n∈N from Corollary 6.7 and the Graph Theorem

8.3, we can formulate the following computable counterexample for the uniform
computable version of the Closed Graph Theorem.

Corollary 8.6 For any computable real number p ≥ 1 there exists a sequence
(Tn)n∈N of computable linear and bijective operators Tn : `p → `p which is not
computable in C(`p, `p) but such that (graph(Tn))n∈N is a computable sequence
of recursive closed subsets of `p × `p.
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A combination of the computable Closed Graph Theorem 8.2 with the
Graph Theorem 8.3 yields the following characterization of computable linear
operators.

Theorem 8.7 (Computable Linear Operators) Let X, Y be computable
Banach spaces, let (ei)i∈N be a computable sequence in X whose linear span
is dense in X and let T : X → Y be a linear operator. Then the following
conditions are equivalent:

(1) T : X → Y is computable,

(2) T : X → Y is bounded and maps computable sequences in X to com-
putable sequences in Y,

(3) T : X → Y is bounded and (Tek)k∈N is a computable sequence in Y ,

(4) graph(T ) is an r.e. closed subset of X × Y ,

(5) graph(T ) is a recursive closed subset of X × Y .

Proof. “(1)=⇒(2)” Let T : X → Y be computable. Then T especially
is continuous and for any computable sequence f : N → X, the sequence
T ◦ f : N → Y is computable too, since the composition of computable func-
tions is computable.

“(2)=⇒(3)” Follows directly since (3) is a special case of (2).

“(3)=⇒(4)” Let αe〈k, 〈n0, ..., nk〉〉 :=
∑k

i=0 αF(ni)ei. Then αe : N → X is
computable and by linearity of T it follows that Tαe is computable since

Tαe〈k, 〈n0, ..., nk〉〉 =
k∑

i=0

αF(ni)Tei

and Te is computable. Moreover, range(αe) is dense in X and thus the se-
quence f : N → X×Y, i 7→ (αe(i), Tαe(i)) is computable and dense in graph(T )
by continuity of T . Thus graph(T ) is an r.e. closed subset of X × Y .

“(4)=⇒(1)” This follows from the computable closed Graph Theorem 8.2.

“(1)=⇒(5)” This follows from the Graph Theorem 8.3.

“(5)=⇒(4)” Any recursive closed set is r.e. closed. 2
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The equivalence of (1), (2) and (3) can also be proved directly without using
the Closed Graph Theorem (cf. Corollary 4.4.50 in [Bra99b]). It is also easy
to prove that any bounded linear operator T with an r.e. closed graph is com-
putable. Thus, the computable Closed Graph Theorem 8.2 could be obtained
directly as a corollary of the classical Closed Graph Theorem (without using
the computable Open Mapping Theorem). Can we also derive the computable
Open Mapping Theorem 5.4 from the computable Closed Graph Theorem 8.2?
At least the classical proof, using the quotient space XT := X/kern(T ) cannot
be used for this purpose. The problem is that the quotient norm, defined by

||x + kern(T )||T := inf
z∈kern(T )

||x− z||

is computable, if and only if the distance function dkern(T ) : X → R is com-
putable. But this is only the case for some computable linear operators
T : X → Y and not in general, as the following counterexample shows.

Lemma 8.8 For any computable real number p ≥ 1 there exists a linear com-
putable operator T : `p → `p such that kern(T ) is a co-r.e. closed subset of `p

which is not r.e. closed.

Proof. Let f : N → N be some computable function such that range(f) is not
recursive. We define a computable sequence a : N → R by

ak :=

{
0 if k 6∈ range(f)
2−m if m = min{n : f(n) = k}

and a computable operator T : `p → `p by T (xk)k∈N := (akxk)k∈N. Obviously,
T is linear and kern(T ) = T−1{0} = {(xk)k∈N ∈ `p : (∀i)(ai 6= 0 =⇒ xi = 0)}.
If we define f : `p → R by f(x) := ||Tx||, then f is computable and kern(T ) =
f−1{0} is co-r.e. closed by Proposition 4.4. Now let (ei)i∈N be the computable
sequence of unit vectors ei ∈ `p, as defined in Proposition 3.8(2). Then

ei ∈ kern(T ) ⇐⇒ ai = 0 ⇐⇒ i 6∈ range(f).

If the distance function dkern(T ) : `p → R>, x 7→ infz∈kern(T ) ||x− z|| of kern(T )
would be upper semi-computable, then N \ range(f) would be r.e. since

dkern(T )(ei) < 1 ⇐⇒ i 6∈ range(f).

Contradiction! Thus, dkern(T ) is not upper semi-computable and thus kern(T )
is not r.e. closed (cf. Corollary 3.14 in [BP00]). 2
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9 The Uniform Boundedness Theorem

In this section we will study computable versions of the Uniform Bounded-
ness Theorem. The theorem states that each pointwise bounded sequence of
bounded linear operators is also uniformly bounded, more precisely:

Theorem 9.1 (Uniform Boundedness Theorem) Let X be a Banach
space, Y a normed space and let (Ti)i∈N be a sequence of bounded linear op-
erators Ti : X → Y . If {||Tix|| : i ∈ N} is bounded for each x ∈ X, then
{||Ti|| : i ∈ N} is bounded.

A proof of the theorem can be found in [GP65]. We start with an inves-
tigation of the bound ||T || := supx∈B(0,1) ||Tx|| of operators T : X → Y . As

a first observation we note that the closed unit ball B(0, 1) of a computable
normed space X is a recursive closed subset.

Lemma 9.2 The closed unit ball B(0, 1) of a computable normed space X is
a recursive closed subset of X.

Proof. We prove

dB(0,1)(x) = max{||x|| − 1, 0}. (2)

Since the norm is computable, it follows that dB(0,1) : X → R is a computable

function. By Proposition 4.6 we obtain that B(0, 1) is a recursive closed subset
of X. For the proof of Equation (2) let x ∈ X. If ||x|| < 1, i.e. x ∈ B(0, 1),
then dB(0,1)(x) = 0 = max{||x|| − 1, 0} follows. Thus, let ||x|| ≥ 1. Then

|| x
||x|| || = 1 and thus y := x

||x|| ∈ B(0, 1). We obtain

dB(0,1)(x) ≤ ||x − y|| =

∣∣∣∣1 − 1

||x||
∣∣∣∣ · ||x|| = ||x|| − 1 = max{||x|| − 1, 0}.

Now let y ∈ B(0, 1) be some arbitrary point. Then ||x − y|| ≥ ||x|| − ||y|| ≥
||x|| − 1 and hence

dB(0,1)(x) = inf
y∈B(0,1)

||x− y|| ≥ ||x|| − 1 = max{||x|| − 1, 0}.

Altogether, this proves Equation (2). 2

As a consequence we obtain that the bound ||T || can be computed from
below, if it exists.
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Theorem 9.3 (Semi-computable bound) Let X, Y be computable normed
spaces. The partial map

|| || :⊆ C(X, Y ) → R<, T 7→ ||T ||

is computable.

Proof. By the previous Lemma 9.2 the closed unit ball B(0, 1) is a recursive
closed subset and hence especially an r.e. closed subset. Thus, there exists
some computable sequence f : N → X such that range(f) is dense in B(0, 1).
By continuity it follows

||T || = sup
x∈B(0,1)

||Tx|| = sup
n∈N

||Tf(n)||

for all bounded continuous operators T : X → Y . Since the norm of Y is
computable and sup :⊆ RN→ R< is computable, we obtain the desired result
with help of the evaluation property. 2

As a corollary we immediately obtain that the bound of any computable
bounded operator is a left-computable real number.

Corollary 9.4 Let X, Y be computable normed spaces. If T : X → Y is a
computable linear operator, then ||T || is a left-computable real number.

On the other hand, we can conclude from Proposition 5.7 and Corollary 6.3
that the bound of a computable linear operator is not necessarily computable:
for any right-computable but not left-computable real number a ∈ (0, 1] there
exists some computable diagonal operator Ta : `p → `p with ||T−1

a || = 1
a

by
Proposition 5.7. Thus, T := T−1

a is computable by Corollary 6.3, but ||T || = 1
a

is not right-computable.

Corollary 9.5 For any computable real number p ≥ 1 there exists some com-
putable linear operator T : `p → `p such that ||T || is not right-computable.

Next we want to show that the map T 7→ ||T || is also discontinuous. There-
fore we formulate the following proposition which corresponds to Proposition
5.7 (but the reader should notice that B(`p, `p) is replaced by C(`p, `p)).

Proposition 9.6 (Inverse diagonal operator) Let p ≥ 1 be a computable
real. There exists a computable multi-valued operation σ :⊆ R> � C(`p, `p)
such that for any a ∈ R> with a ∈ [ 1

2
, 1] there exists some T ∈ σ(a) and all

such T : `p → `p have as inverse T−1 some diagonal operator of a.
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Proof. Given a real number a ∈ R> with a ∈ [ 1
2
, 1], we can effectively find

a decreasing sequence (an)n∈N of rational numbers an ∈ Q such that a0 = 1
and a = infn∈Nan. We define a diagonal operator Ta : `p → `p of a by
Ta(xk)k∈N := (akxk)k∈N for all (xk)k∈N ∈ `p. Given some x = (xk)k∈N and a
precision m ∈ N we can effectively find some n ∈ N and numbers q0, ..., qn ∈ QF

such that ||∑n
i=0 qiei − x||p < 2−m−1. It follows ||T−1

a || ≤ 1
a
≤ 2 and hence∣∣∣∣∣

∣∣∣∣∣T−1
a

(
n∑

i=0

qiei

)
− T−1

a (x)

∣∣∣∣∣
∣∣∣∣∣
p

≤ ||T−1
a || ·

∣∣∣∣∣
∣∣∣∣∣

n∑
i=0

qiei − x

∣∣∣∣∣
∣∣∣∣∣
p

< 2−m

By linearity of T−1
a we obtain T−1

a (
∑n

i=0 qiei) =
∑n

i=0 qiT
−1
a (ei) =

∑n
i=0

qi

ai
and

thus we can evaluate T := T−1
a effectively up to any given precision m. Using

type conversion we can actually prove that there exists an operation σ with
the desired properties. 2

As a consequence we obtain that T 7→ ||T || is not continuous in general.

Theorem 9.7 Let p ≥ 1 be a computable real. The mapping T 7→ ||T ||, de-
fined for linear bounded and bijective operators T : `p → `p, is not continuous.

Proof. Let us assume that || || : C(`p, `p) → R, T 7→ ||T || is continuous. Then
the composition || || ◦ σ :⊆ R> → R, a 7→ 1

a
would be continuous too by the

previous Proposition 9.6 and Lemma 5.6. Since I :⊆ R→ R, x 7→ 1
x

is contin-
uous, it follows that the identity idA :⊆ R> → R is continuous on A := [ 1

2
, 1]

(and thus ρ>|A ≤t ρ), which is obviously wrong. Contradiction! 2

Using Theorem 9.3 and the fact that sup :⊆ RN< → R< is computable, we
obtain the following (not very surprising) computable version of the Uniform
Boundedness Theorem which states that we can compute the uniform bound
of a pointwise bounded sequence of linear bounded operators from below.

Corollary 9.8 (Semi-computable Uniform Boundedness Theorem)
Let X be a computable Banach space and let Y be a computable normed space.
Then the mapping

S :⊆ C(X, Y )N→ R<, (Ti)i∈N 7→ sup
i∈N

||Ti||

with dom(S) = {(Ti)i∈N : Ti : X → Y linear and bounded and {||Tix|| : i ∈ N}
is bounded for each x ∈ X} is computable.

Here, the classical Uniform Boundedness Theorem guarantees that the
mapping S is well-defined. We obtain directly the following corollary.
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Corollary 9.9 Let X be a computable Banach space and let Y be a computable
normed space. If (Ti)i∈N is a computable sequence of computable bounded op-
erators Ti : X → Y such that {||Tix|| : i ∈ N} is bounded for each x ∈ X, then
supi∈N||Ti|| is a left-computable real number.

On the other hand, using the constant sequence with the computable op-
erator T : `p → `p from Corollary 9.5, one can see that the uniform bound
is not computable in general. Correspondingly, one can use Theorem 9.7 to
show that the uniform bound does not continuously depend on the sequence
of operators.

Up to now we have only seen that, given an operator T , we can compute
arbitrary lower rational bounds of ||T || which is not very helpful. If we cannot
compute ||T || precisely, then it would be useful to compute at least some upper
bound s ≥ ||T ||. And actually this is possible, as the following result shows.

Theorem 9.10 (Bound) Let X, Y be computable normed spaces. There ex-
ists a computable multi-valued operation N :⊆ C(X, Y )� R, such that for any
linear bounded operator T : X → Y , there exists some s ∈ N(T ) and ||T || ≤ s
holds for all such s.

Proof. Given a linear bounded operator T : X → Y , we can effectively
compute T−1B(0, 1) ∈ O(X) by Theorem 6.4 and the evaluation property
since B(0, 1) is a computable point in O(X). By linearity of T , we obtain
0 ∈ T−1B(0, 1) and thus we can effectively find some rational number r > 0
such that B(0, r) ⊆ T−1B(0, 1) by Lemma 5.2. By Lemma 6.8 we obtain
||T || ≤ 1

r
. Thus, s := 1

r
is an appropriate result. 2

Now the question appears whether we can prove a corresponding com-
putable version of the Uniform Boundedness Theorems which allows to com-
pute some upper bound of the uniform bound. Actually, the question is:
which input information on a sequence (Ti)i∈N of linear bounded and pointwise
bounded operators Ti suffices to compute some upper bound on supi∈N ||Ti||?
The following theorem shows that the pure knowledge of pointwise bounded-
ness does not suffice, not even in case of Euclidean space.

Theorem 9.11 There exists no continuous operation β :⊆ C(R)N� R with
the following property: for all sequences (Ti)i∈N of linear bounded operators
Ti : R→ R such that {||Tix|| : i ∈ N} is bounded for each x ∈ R, there exists
some s ∈ β(Ti)i∈N and supi∈N||Ti|| ≤ s for all such s.

Proof. There exists a computable operation A :⊆ R< � RN such that
[1,∞) ⊆ dom(A) and (an)n∈N ∈ A(a) implies a0 = 1 and supn∈Nan = a
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for each a ∈ [1,∞). The function B : RN→ C(R)N, (an)n∈N 7→ (x 7→ anx)n∈N
is computable too, as one can show by evaluation and type conversion. Now
let us assume that there exists a continuous operation β :⊆ C(R)N� R with
the property described above. Then F := β ◦ B ◦ A :⊆ R<� R is a continu-
ous operation such that [1,∞) ⊆ dom(F ) and s ∈ F (a) implies s ≥ a for all
a ∈ R< with a ≥ 1. But such a continuous operation can obviously not exist.
Contradiction! 2

The following result shows that it does not help if the pointwise bounds
on some fundamental sequence of unit vectors are given as additional input
information. The proof uses a similar idea as the proof of Proposition 9.6.

Theorem 9.12 Let p ≥ 1 be some computable real number. There exists no
continuous operation β :⊆ C(`p, `p)

N× RN� R with the following property:
for all sequences (sj)j∈N of real numbers and for all sequences (Ti)i∈N of linear
bounded operators Ti : R→ R such that {||Tix|| : i ∈ N} is bounded for each
x ∈ R and supi∈N ||Tiej|| = sj, there exists some s ∈ β((Ti)i∈N, (sj)j∈N) and
supi∈N||Ti|| ≤ s for all such s.

Proof. Let us assume that a continuous operation β :⊆ C(`p, `p)
N×RN� R

with the stated property exists. Given a real number a ∈ R< with a ∈ [1,∞),
we can effectively find an increasing sequence (an)n∈N of rational numbers
an ∈ Q such that a0 = 1 and a = supn∈Nan. Let

aij :=

{
aj for j = 0, ..., i
ai for j > i

We define operators Ti : `p → `p by Ti(xk)k∈N := (aikxk)k∈N for all (xk)k∈N ∈ `p.
Then ||Ti|| = ai and supi∈N ||Tiej|| = aj. Given some x = (xk)k∈N, i ∈ N and a
precision m ∈ N we can effectively find some n ∈ N and numbers q0, ..., qn ∈ QF

such that ||∑n
j=0 qjej − x||p < 1

ai
2−m and hence∣∣∣∣∣

∣∣∣∣∣Ti

(
n∑

j=0

qjej

)
− Ti(x)

∣∣∣∣∣
∣∣∣∣∣
p

≤ ||Ti|| ·
∣∣∣∣∣
∣∣∣∣∣

n∑
j=0

qjej − x

∣∣∣∣∣
∣∣∣∣∣
p

< 2−m

By linearity of Ti we obtain Ti(
∑n

j=0 qjej) =
∑n

j=0 qjTi(ej) =
∑n

j=0 qjaij and
thus we can evaluate each Ti effectively up to any given precision m. Us-
ing type conversion we can actually prove that there exists an operation
σ :⊆ R< � C(`p, `p)

N that maps each a to a sequence (Ti)i∈N of opera-
tors as described above. Now by assumption we can continuously find some
s ∈ β((Ti)i∈N, (aj)j∈N) such that s ≥ supi∈N ||Ti|| = supi∈Nai = a. Altogether,
we have proved that under the assumption there is a continuous operation
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γ :⊆ R<� R which maps each a ∈ R< with a ≥ 1 to some s ∈ R with s > a.
But such a continuous operation can obviously not exist. Contradiction! 2

Although it does not help to know the pointwise bounds on some funda-
mental sequence of unit vectors, it is sufficient to have all pointwise bounds as
additional input information, as the following result shows. Therefore, we will
consider the input as operator T : X → B(N, Y ) and for all such operators we
define Ti : X → Y, x 7→ T (x)(i). It is clear that an operator T is well-defined,
if and only if (Ti)i∈N is pointwise bounded and T is linear, if and only if all Ti

are linear. By the classical Uniform Boundedness Theorem a linear operator
T is bounded, if and only if all Ti are bounded and the sequence (Ti)i∈N is
pointwise bounded. In this case we obtain

||T || = sup
x∈B(0,1)

||Tx|| = sup
x∈B(0,1)

sup
i∈N

||Tix|| = sup
i∈N

sup
x∈B(0,1)

||Tix|| = sup
i∈N

||Ti||,

thus, the uniform bound of (Ti)i∈N is nothing but the bound of T . The main
technical difficulty in the proof of the following theorem is the fact that B(N, Y )
is a non-separable Banach space and therefore we cannot derive the result
directly from Theorem 9.10.

Theorem 9.13 (Computable Uniform Boundedness Theorem) Let X
be a computable Banach space and let Y be a computable normed space. There
exists a computable operation β :⊆ C(X,B(N, Y )) � R with the following
property: for all linear bounded operators T : X → B(N, Y ) there exists some
s ∈ β(T ) and ||T || = supi∈N ||Ti|| ≤ s for all such s.

Proof. First of all, we prove that the operation

U : C(X,B(N, Y )) → O(X), T 7→ T−1B(0, 1)

is computable. Therefore, consider

f : B(N, Y ) → R, (yi)i∈N 7→ max{1 − ||(yi)i∈N||, 0}.

Since the norm || || : B(N, Y ) → R is computable, it follows that f is
computable too. Thus, given T ∈ C(X,B(N, Y )) we can effectively find
g := f ◦ T : X → R, using evaluation and type conversion. Now

g−1{0} = T−1f−1{0} = T−1(B(N, Y ) \ B(0, 1))

and thus we can determine U(T ) = T−1B(0, 1) = X \ g−1{0} ∈ O(X) effec-
tively by Proposition 4.4.
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By linearity of T , we obtain 0 ∈ T−1B(0, 1) and thus we can effectively
find some rational number r > 0 such that B(0, r) ⊆ U(T ) = T−1B(0, 1) by
Lemma 5.2. By Lemma 6.8 we obtain ||T || ≤ 1

r
. Thus, s := 1

r
is an appropriate

result of β(T ). 2

Can we also effectivize the contraposition of the formulation of the Uniform
Boundedness Theorem? Thus, given a sequence of linear bounded operators
Ti : X → Y such that {||Ti|| : i ∈ N} is unbounded, can we effectively find
some witness x ∈ X such that {||Tix|| : i ∈ N} is unbounded? The answer is
“yes”, as the following theorem shows. The proof is a direct effectivization of
the classical proof of the Uniform Boundedness Theorem [GP65] and it uses
the computable Baire Category Theorem B.4 from Appendix B.

Theorem 9.14 (Contra computable Uniform Boundedness Theorem)
Let X be a computable Banach space and let Y be a computable normed space.
There exists a computable multi-valued operation β ′ :⊆ C(X, Y )N� XN with
the following property: for all sequences (Ti)i∈N of linear and bounded op-
erators Ti : X → Y such that {||Ti|| : i ∈ N} is unbounded, there exists
a sequence (xn)n∈N ∈ β ′(Ti)i∈N and all such sequences are dense in the set
{x ∈ X : {||Tix|| : i ∈ N} is unbounded }.

Proof. Let (Ti)i∈N be a sequence of linear bounded operators Ti : X → Y
such that {||Ti|| : i ∈ N} is unbounded. Let fi : X → R be defined by
fi(x) := ||Tix|| and

An := {x ∈ X : (∀i ∈ N) ||Tix|| ≤ n} =
∞⋂
i=0

f−1
i [0, n].

Thus, using the fact that the norm || || : Y → R is computable, by Theorem
6.4 and Proposition B.9(1) from Appendix B we obtain that the mapping
α : C(X, Y )N→ A>(X)N, (Ti)i∈N→ (An)n∈N is computable, since ([0, n])n∈N is
a computable sequence in A>(R). Moreover, we obtain

∞⋃
n=0

An = {x ∈ X : (∃n ∈ N)(∀i ∈ N) ||Tix|| ≤ n}

= {x ∈ X : {||Tix|| : i ∈ N} bounded} .

Now, let us assume that some set An is somewhere dense, i.e. there exists some
x ∈ X and some ε > 0 such that B(x, ε) ⊆ An. Then there is some r ∈ N such
that

B(0, 1) ⊆ rB(x, ε) ⊆ rAn ⊆ Arn.
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Thus, ||Ti|| = supx∈B(0,1) ||Tix|| ≤ rn for all i ∈ N which contradicts the as-
sumption that {||Ti|| : i ∈ N} is unbounded. Hence, (An)n∈N is a sequence of
nowhere dense sets. By the Computable Baire Category Theorem B.4 from
Appendix B there exists a computable operation ∆ :⊆ A>(X)N � XN such
that there exists some (xn)n∈N ∈ ∆(An)n∈N whenever (An)n∈N is a sequence of
nowhere dense closed subsets An ⊆ X and (xn)n∈N is dense in X \⋃∞

n=0 An for
all such sequences (xn)n∈N. Thus, β ′ := ∆ ◦ α is a computable operation with
the desired properties. 2

We obtain the following weaker non-uniform corollary.

Corollary 9.15 Let X be a computable Banach space and let Y be a com-
putable normed space. For any computable sequences (Ti)i∈N of linear and
computable operators Ti : X → Y such that {||Ti|| : i ∈ N} is unbounded,
there exists a computable sequence (xn)n∈N in X which is dense in the set
{x ∈ X : {||Tix|| : i ∈ N} is unbounded }.

10 Condensation of Singularities

In this section we want to study a computable version of Banach’s Theorem
on Condensation of Singularities.

Theorem 10.1 (Condensation of Singularities) Let X be a Banach space
and Y a normed space. If (Tmn)n∈N is a sequence of linear and bounded op-
erators Tmn : X → Y such that there exists an xm ∈ X for every m ∈ N

with supn∈N ||Tmn(xm)|| = ∞, then there also exists an x ∈ X such that
supn∈N ||Tmn(x)|| = ∞ for all m ∈ N.

A proof can be found in [GP65] and it can be effectivized straightforwardly
using the computable Baire Category Theorem B.4 from Appendix B. The
proof is very similar to the proof of the contra computable Uniform Bounded-
ness Theorem 9.14.

Theorem 10.2 (Computable Condensation of Singularities) Let X be
a computable Banach space and Y a computable normed space. There exists
a computable operation C :⊆ C(X, Y )N� XN with the following property: if
(Ti)i∈N is a sequence of linear bounded operators Ti : X → Y such that there
exists an xm ∈ X for every m ∈ N with supn∈N ||T〈m,n〉(xm)|| = ∞, then there
exists a sequence (yj)j∈N ∈ C(Ti)i∈N and all such sequences (yj)j∈N are dense
in the set {x ∈ X : (∀m) supn∈N ||T〈m,n〉(x)|| = ∞}.
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Proof. Let (Ti)i∈N be a sequence of linear bounded operators Ti : X → Y such
that there exists an xm ∈ X for every m ∈ N with supn∈N ||T〈m,n〉(xm)|| = ∞.
Let fi : X → R be defined by f〈m,n〉(x) := ||T〈m,n〉(x)|| and

A〈m,k〉 := {x ∈ X : (∀n) ||T〈m,n〉(x)|| ≤ k} =
∞⋂

n=0

f−1
〈m,n〉[0, k].

Thus, using the fact that the norm || || : Y → R is computable, by Theorem
6.4 and Proposition B.9(1) from Appendix B we obtain that the mapping
α : C(X, Y )N → A>(X)N, (Ti)i∈N → (Ai)i∈N is computable, since ([0, k])k∈N is
a computable sequence in A>(R). Moreover, we obtain

∞⋃
〈m,k〉=0

A〈m,k〉 =
{
x ∈ X : (∃m, k)(∀n) ||T〈m,n〉(x)|| ≤ k

}
= X \

{
x ∈ X : (∀m) sup

n∈N
||T〈m,n〉(x)|| = ∞

}
.

Now, let us assume that some set A〈m,k〉 is somewhere dense, i.e. there exists
some x ∈ X and some ε > 0 such that B(x, ε) ⊆ A〈m,k〉. Then there is some
r ∈ N such that

xm ∈ rB(x, ε) ⊆ rA〈m,k〉 ⊆ A〈m,rk〉.

Thus, ||T〈m,n〉(xm)|| ≤ rk for all n ∈ N but this is a contradiction to the
condition supn∈N ||T〈m,n〉(xm)|| = ∞. Hence, (Ai)i∈N is a sequence of nowhere
dense sets. By the Computable Baire Category Theorem B.4 from Appendix
B there exists a computable operation ∆ :⊆ A>(X)N� XN such that there
exists some (yj)j∈N ∈ ∆(Ai)i∈N whenever (Ai)i∈N is a sequence of nowhere
dense closed subsets Ai ⊆ X and (yj)j∈N is dense in X \⋃∞

i=0 Ai for all such
sequences (yj)j∈N. Thus, C := ∆ ◦ α is a computable operation with the de-
sired properties. 2

We obtain the following weaker non-uniform corollary.

Corollary 10.3 Let X be a computable Banach space and Y a computable
normed space. If (Ti)i∈N is a computable sequence of linear computable oper-
ators Ti : X → Y such that there exists an xm ∈ X for every m ∈ N with
supn∈N ||T〈m,n〉(xm)|| = ∞, then there exists a computable sequence (yj)j∈N in
X which is dense in the set {x ∈ X : (∀m) supn∈N ||T〈m,n〉(x)|| = ∞}.

11 Divergent Fourier Series

One standard example of an application of the Uniform Boundedness Theorem
is the construction of a continuous function f : [0, 2π] → Rwhose Fourier series
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diverges at t = 0 (cf. [GP65]). We can directly transfer this to the computable
setting and prove that there exists a computable function f whose Fourier
series does not converge at t = 0.

Theorem 11.1 There exists a computable function f : [0, 2π] → R such that

si :=
1

2π

∫ 2π

0

f(t)
sin(i + 1

2
)t

sin 1
2
t

dt

does not converge to f(0) as i → ∞.

Proof. We consider the computable Banach space C[0, 2π] and we define a
sequence of operators Ti : C[0, 2π] → R by

Ti(f) :=
1

2π

∫ 2π

0

f(t)
sin(i + 1

2
)t

sin 1
2
t

dt

One can prove that ||Ti|| = 1
2π

∫ 2π

0

∣∣∣ sin(i+1/2)t
sin(t/2)

∣∣∣ dt and thus each Ti is bounded,

whereas {||Ti|| : i ∈ N} is unbounded [GP65]. Using evaluation and type
conversion, one can prove that (Ti)i∈N is a computable sequence of linear and
computable operators Ti : C[0, 2π] → R in C(C[0, 2π]). This follows from the
fact that integration is computable (cf. Theorem 6.4.1.2 in [Wei00]). Now
Corollary 9.15 yields a computable sequence (fn)n∈N in C[0, 2π] which is dense
in the set {f ∈ C[0, 2π] : {||Tif || : i ∈ N} is unbounded }. Thus, all functions
f := fn : [0, 2π] → R are computable and fulfill the desired property. 2

Using the computable version of the Theorem on Condensation of Singu-
larities 10.2 we could even prove that, given a sequence of computable numbers
(xn)n∈N in [0, 2π], we can effectively find a computable function f : [0, 2π] → R

such that the Fourier series of f does not converge to f for all xn. We will not
formulate this theorem here.

12 The Banach-Steinhaus Theorem

In this section we discuss a computable version of the Banach-Steinhaus The-
orem [DS59].

Theorem 12.1 (Banach-Steinhaus Theorem) Let X be a Banach space
and Y be a normed space and (Ti)i∈N a sequence of linear and bounded operators
Ti : X → Y which converges pointwise. Then by

Tx := lim
n→∞

Tnx

a linear and bounded operator T : X → Y is defined.
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Additionally, ||T || ≤ supn∈N ||Tn|| holds in the situation of the theorem.
The following simple example shows (similarly as in Theorem 9.11) that a
given computable sequence of computable and pointwise converging operators
needs not to converge to a computable operator.

Example 12.2 Let (an)n∈N be an increasing computable sequence of real num-
bers such that a := supn∈Nan exists, but is not computable. Then the sequence
(Ti)i∈N of mappings Ti : R → R, x 7→ aix is a computable sequence of com-
putable linear operators such that Tx := limn→∞ Tnx exists for all x ∈ R, but
the operator T : R→ R defined in this way, i.e. Tx = ax, is not computable.

Thus, for a computable version of the Banach-Steinhaus Theorem we need
more information on the sequence (Ti)i∈N. It turns out that it suffice to know
the uniform bound supi∈N ||Ti|| and the modulus of convergence of the se-
quences (Tix)i∈N. Because of linearity, it even suffices to know these moduli
on some fundamental sequence of unit vectors.

Theorem 12.3 (Computable Banach-Steinhaus Theorem) Let X be a
computable Banach space with some computable sequence (ej)j∈N of unit vectors
whose linear span is dense in X and let Y be a computable normed space. Then
the function

L :⊆ C(X, Y )N× NN× N → C(X, Y ), ((Ti)i∈N, m, s) 7→
(
x 7→ lim

n→∞
Tnx

)
,

defined for all tuples ((Ti)i∈N, m, s) such that the operators Ti : X → Y are
linear bounded and pointwise convergent as i → ∞, supi∈N ||Ti|| ≤ s and
||Tm〈i,j〉ej − lim

n→∞
Tnej|| ≤ 2−i for all i, j ∈ N, is computable.

Proof. Given a sequence (Ti)i∈N of linear bounded and pointwise convergent
operators Ti : X → Y together with a bound s ≥ supi∈N||Ti|| and a modulus of
convergence m : N→ N for (ej)j∈N such that ||Tm〈i,j〉ej − limn→∞ Tnej|| ≤ 2−i,
the classical Banach-Steinhaus Theorem guarantees that T := L((Ti)i∈N, m, s) ∈
C(X, Y ) actually is defined and ||T || ≤ s. W.l.o.g. we can assume that m is
monotonically increasing. Given some x ∈ X and some k ∈ N we can effec-
tively find some finite linear combination x′ :=

∑l
j=0 ajej with aj ∈ QF such

that ||x − x′|| < 1
s
2−k−2. Let a := max{|aj| : j = 0, ..., l} and k′ ∈ N such

that (l + 1) · a · 2−k′
< 2−k−2, and let M := max{m〈k′, j〉 : j = 0, ..., l} and

y := TMx′. Then we obtain

||Tx− y|| ≤ ||Tx− Tx′|| + ||Tx′ − y||

≤ s
1

s
2−k−2 +

∣∣∣∣∣
∣∣∣∣∣

l∑
j=0

aj(Tej − TMej)

∣∣∣∣∣
∣∣∣∣∣
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≤ 2−k−2 + (l + 1) · a · 2−k′

< 2−k−1.

Thus, by producing some output y′ ∈ Y with ||y−y′|| < 2−k−1 one can actually
compute T with precision 2−k. Using evaluation and type conversion, one can
show that a given tuple ((Ti)i∈N, m, s) can be effectively transformed into T . 2

A combination of the computable Banach-Steinhaus Theorem 12.3 with
the computable Uniform Boundedness Theorem 9.13 leads to the following
corollary.

Corollary 12.4 Let X be a computable Banach space with some computable
sequence (ej)j∈N of unit vectors whose linear span is dense in X and let Y be
a computable normed space. Then the function

L′ :⊆ C(X,B(N, Y )) ×NN→ C(X, Y ), (T, m) 7→
(
x 7→ lim

n→∞
Tnx

)
,

defined for all linear bounded operators T : X → B(N, Y ) such that (Tix)i∈N
converges for each x ∈ X as i → ∞ and ||Tm〈i,j〉ej − lim

n→∞
Tnej|| ≤ 2−i for all

i, j ∈ N, is computable.

Since for a single sequence (Ti)i∈N an upper bound s on the uniform bound is
always available, we obtain the following less uniform version of the computable
Banach-Steinhaus Theorem 12.3.

Corollary 12.5 Let X be a computable Banach space with some computable
sequence (ej)j∈N of unit vectors whose linear span is dense in X and let Y be
a computable normed space. If (Ti)i∈N is a computable sequence of linear and
computable operators Ti : X → Y which converges pointwise and if m : N → N

is a computable function such that ||Tm〈i,j〉ej− lim
n→∞

Tnej|| ≤ 2−i for all i, j ∈ N,

then by
Tx := lim

n→∞
Tnx

a linear and computable operator T : X → Y is defined.

13 Landau’s Theorem and Matrix Operators

In this section we will study functionals T : `p → F and matrix operators
T : `p → `q . We start with an investigation of Landau’s Theorem.

Theorem 13.1 (Landau’s Theorem) Let p, q > 1 be real numbers such that
1
p

+ 1
q

= 1 or let p = 1 and q = ∞ and let a = (ak)k∈N be some sequence in F.

Then
∑∞

k=0 akxk converges for each (xk)k∈N ∈ `p, if and only if a ∈ `q.
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The theorem is typically proved using Hölder’s inequality and the Banach-
Steinhaus Theorem (cf. Section 46.1 in [Heu86]). Given a sequence a =
(ak)k∈N ∈ `q, let us denote by λa ∈ (`p)

′ the functional

λa : `p → F, (xk)k∈N 7→
∞∑

k=0

akxk.

Landau’s Theorem leads to the question whether the mapping

λ : `q → C(`p, F), a 7→ λa

as well as its partial inverse λ−1 are computable? It turns out that at least
the inverse λ−1 is not computable in general as the following simple example
shows.

Example 13.2 Let p, q > 1 be computable real numbers such that 1
p

+ 1
q

= 1.

Let a = (ak)k∈N be a computable sequence of real numbers such that ||a||q exists
but is not computable. Then λa : `p → R is well-defined by Landau’s Theorem
and it is a computable linear operator by Theorem 8.7, since it is bounded by
Hölder’s inequality and (λaek)k∈N = (ak)k∈N is a computable sequence.

Since one can show ||λa|| = ||a||q (cf. [Heu86]), this example also shows that
even simple computable functionals of Landau’s type do not have a computable
norm in general. Actually, one can use the idea of the previous example to
prove that λ−1 is not continuous (see Theorem 13.5 below). Therefore the
following computable version of Landau’s Theorem is in a certain sense the
best which one could expect.

Theorem 13.3 Let p, q > 1 be computable real numbers such that 1
p

+ 1
q

= 1
or let p = 1 and q = ∞. The mapping

L :⊆ FN×R→ C(`p, F), (a, s) 7→ λa

with dom(L) := {(a, s) ∈ `q × R : ||a||q ≤ s} is computable and it admits a
multi-valued computable right-inverse.

Proof. Given a sequence a = (ak)k∈N ∈ FN and s > 0 such that a ∈ `q and
||λa|| = ||a||q ≤ s, and given some x = (xk)k∈N ∈ `p and some precision m ∈ N

we can effectively find some n ∈ N and numbers q0, ..., qn ∈ QF such that
||∑n

i=0 qiei − x||p < 1
s
2−m. It follows∣∣∣∣∣λa

(
n∑

i=0

qiei

)
− λa(x)

∣∣∣∣∣ ≤ ||λa|| ·
∣∣∣∣∣
∣∣∣∣∣

n∑
i=0

qiei − x

∣∣∣∣∣
∣∣∣∣∣
p

< s · 1

s
2−m = 2−m
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By linearity of λa we obtain λa(
∑n

i=0 qiei) =
∑n

i=0 qiλa(ei) =
∑n

i=0 qiai and
thus we can evaluate λa effectively up to any given precision m. Using type
conversion this proves that L is computable.

Now let us assume that λa ∈ C(`p, F) is given. By evaluation it follows that
we can effectively compute a = (ak)k∈N = (λa(ek))k∈N. Moreover, Theorem
9.10 guarantees that we can effectively find some s ∈ Rwith ||a||q = ||λa|| ≤ s.
This shows that we can compute some multi-valued right inverse of L. 2

Since the norm || ||q : `q → R and the canonical injection `q ↪→ FN are
computable, we obtain the following corollary, if we consider λ as mapping
λ : `q → (`p)

′. This means that we replace C(`p, F) by (`p)
′ = B(`p, F) in the

image, together with the corresponding representations.

Corollary 13.4 (Computable Landau Theorem) Let p, q > 1 be com-
putable real numbers such that 1

p
+ 1

q
= 1 or let p = 1 and q = ∞. Then

the mapping
λ : `q → (`p)

′, a 7→ λa

is a computable isometric isomorphism, especially λ and λ−1 are computable.

As another consequence of Theorem 13.3 we obtain the result that the
operator norm is a discontinuous mapping even for functionals f : `p → R.

Theorem 13.5 Let p ≥ 1 be a computable real number. The operator norm

|| || : C(`p, F) → R, f 7→ ||f ||
is not continuous.

Proof. Let us assume that the mapping || || :⊆ C(`p, F) → R, defined for
linear bounded T : `p → F would be continuous. Now let us consider the
mapping L :⊆ FN × R → C(`p, F) from Theorem 13.3 and let q be such that
1
p
+ 1

q
= 1. Then ||L(a, s)|| = ||λa|| = ||a||q and || || ◦L :⊆ FN×R→ C(`p, F) is

continuous. Especially, it follows that N :⊆ FN → R, a 7→ ||a||q is continuous,
say for all a with ||a||q ≤ 1. But this is obviously not the case, since the prod-
uct topology on {a ∈ FN : ||a||q ≤ 1} is strictly smaller than the corresponding
subtopology of the `q topology. 2

Now we continue to study the slightly more complicated case of matrix
operators T : `p → `p. We start with a definition.

Definition 13.6 (Matrix Operator) Let p, q ≥ 1 be real numbers. A map-
ping T : `p → `q is called matrix operator, if there exists an infinite matrix
A = (aik) ∈ FN×N such that for all x = (xk)k∈N ∈ `p
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(1) yi :=
∞∑

k=0

aikxk exists for all i ∈ N,

(2) y := (yi)i∈N ∈ `q and

(3) Tx = y.

If an infinite matrix A = (aik) ∈ FN×N fulfills conditions (1) and (2), then
we will denote the corresponding matrix operator T : `p → `q , defined by

condition (3), by Â := T . We mention that from the computational point of
view we do not have to distinguish FN×N from (FN)N and we will also use the
notation Â if A ∈ (FN)N. Using the Closed Graph Theorem one can prove
that each matrix operator T : `p → `q is bounded [Heu86]. Now the question

appears under which conditions on A computability of Â is guaranteed? The
following example shows that there exists a computable matrix A ∈ RN×N

such that the corresponding matrix operator Â : `p → `q is well-defined but
not computable. It is simply the “vertical” counterpart of the “horizontal”
Example 13.2.

Example 13.7 Let p, q ≥ 1 be computable real numbers. Let a = (ai)i∈N be
a computable sequence of real numbers such that s := ||a||q exists, but is not
computable. Then the matrix A = (aik) ∈ RN×N with ai0 := ai for all i ∈ N

and aik+1 := 0 for all i, k ∈ N is a computable matrix but the matrix operator
Â : `p → `q is not computable since Âe0 = a is not computable in `q.

Using the fact that Âek = (aik)i∈N is the k–th column vector whenever A =
(aik) is a matrix which defines some matrix operator Â, it is straightforward
to characterize those matrices which induce computable matrix operators by
Theorem 8.7.

Corollary 13.8 Let p, q ≥ 1 be computable real numbers and let the matrix
A = (aik) ∈ FN×N be such that Â : `p → `q is well-defined. Then Â is
computable, if and only if ((aik)i∈N)k∈N is a computable sequence in `q.

However, not any matrix whose column vectors form a computable sequence
in `q define a matrix operator Â. By Landau’s Theorem we know that in case
p > 1 at least the row vectors have to be in ` p

p−1
. On the other hand, these

both conditions are not sufficient, since the unit matrix I consists of column
and row vectors which form a computable sequence in `p for any p, but the

corresponding matrix operator Î = id : `p → `q is only well-defined (and com-
putable) for p ≤ q. Nevertheless we can formulate a theorem which generalizes
the computable version of Landau’s Theorem 13.3 for matrix operators. The
proof is essentially the same.
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Theorem 13.9 (Computable matrix operators) Let p > 1, q ≥ 1 be com-
putable real numbers. The mapping

M :⊆ (`q)
N×R→ C(`p, `q), (A, s) 7→ Â

with dom(M) := {(A, s) ∈ (`q)
N× R : ||Â|| ≤ s} is computable and admits a

multi-valued computable right-inverse.

Proof. Given a matrix A = (ak)k∈N ∈ (`q)
N and s > 0 such that ||Â|| ≤ s, and

given some x = (xk)k∈N ∈ `p and some precision m ∈ N we can effectively find
some n ∈ N and numbers q0, ..., qn ∈ QF such that ||∑n

i=0 qiei − x||p < 1
s
2−m.

It follows∣∣∣∣∣
∣∣∣∣∣Â
(

n∑
i=0

qiei

)
− Â(x)

∣∣∣∣∣
∣∣∣∣∣
q

≤ ||Â|| ·
∣∣∣∣∣
∣∣∣∣∣

n∑
i=0

qiei − x

∣∣∣∣∣
∣∣∣∣∣
p

< s · 1

s
2−m = 2−m

By linearity of Â we obtain Â(
∑n

i=0 qiei) =
∑n

i=0 qiÂ(ei) =
∑n

i=0 qiai and

thus we can evaluate Â effectively up to any given precision m. Using type
conversion one can prove that M is computable.

Now let us assume that Â ∈ C(`p, `q) is given. By evaluation it follows

that we can effectively compute A = (ak)k∈N = (Â(ek))k∈N ∈ (`q)
N. Moreover,

theorem 9.10 guarantees that we can effectively find some s ∈ Rwith ||Â|| ≤ s.
This shows that we can compute some multi-valued right inverse of M . 2

It is worth mentioning that we have expressed dom(M) using the operator
norm ||Â|| while in the corresponding Theorem 13.3 we have used the identity
||λa|| = ||a||q to replace the value ||λa|| by ||a||q, thus by a condition which
directly refers to the sequence a. Unfortunately, no such handy sufficient
and necessary condition on matrices A is known in case of matrix operators,
not even in the Hilbert space case p = q = 2 (cf. Problem 44 in [Hal82]).
However, there is a sufficient criterion: we close this section with showing that
a certain Banach space of matrices can be computably embedded into the space
of matrix operators. Therefore let `p,q := {(aik)(i,k)∈N2 ∈ FN×N : ||A||p,q < ∞}
with

||A||p,q :=
∣∣∣∣∣∣(||(aik)k∈N||p

)
i∈N

∣∣∣∣∣∣
q
=


 ∞∑

i=0

( ∞∑
k=0

|aik|p
) q

p




1
q

.

It is easy to see that for computable real numbers p, q the space (`p,q, || ||p,q, e)
is a computable Banach space, where (eik) is the matrix with 1 in position (i, k)
and 0 elsewhere. In the case p = q = 2 the space `2,2 is isometric isomorphic
to the space H(`2) of Hilbert-Schmidt operators T : `2 → `2 with the Hilbert-
Schmidt norm (cf. [Heu86]). First we show that for suitable values of p, q each
matrix A ∈ `p,q induces a matrix operator Â.
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Lemma 13.10 Let p > 1, q ≥ 1 be real numbers. If A ∈ ` p
p−1

,q, then the

matrix operator Â : `p → `q is well-defined and ||Â|| ≤ ||A|| p
p−1

,q.

Proof. Let A = (aik) ∈ ` p
p−1

,q and x = (xk)k∈N ∈ `p. Since

||(aik)k∈N|| p
p−1

≤
∣∣∣∣∣∣(||(aik)k∈N|| p

p−1

)
i∈N

∣∣∣∣∣∣
q

= ||A|| p
p−1

,q < ∞

we obtain (aik)k∈N ∈ ` p
p−1

for all i ∈ N. By Hölders inequality this implies that

yi :=
∑∞

k=0 aikxk exists for all i ∈ N and with y := (yi)i∈N we obtain

||y||q =

( ∞∑
i=0

|yi|q
) 1

q

=

( ∞∑
i=0

∣∣∣∣∣
∞∑

k=0

aikxk

∣∣∣∣∣
q) 1

q

≤
( ∞∑

i=0

( ∞∑
k=0

|aikxk|
)q)1

q

≤
( ∞∑

i=0

(
||(aik)k∈N|| p

p−1
· ||x||p

)q
)1

q

= ||x||p ·

 ∞∑

i=0

( ∞∑
k=0

|aik|
p

p−1

) (p−1)q
p




1
q

= ||x||p · ||A|| p
p−1

,q.

Hence y ∈ `q and Â : `p → `q is well-defined. Moreover, ||Â|| ≤ ||A|| p
p−1

,q. 2

Using this lemma we obtain the following corollary of Theorem 13.9.

Corollary 13.11 Let p > 1, q ≥ 1 be computable real numbers. The mapping

H : ` p
p−1

,q → B(`p, `q), A 7→ Â

is computable.

This corollary provides a handy sufficient and uniform criterion which guar-
antees that the matrix operator map A 7→ Â becomes computable.
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14 The Finite-Dimensional Case

In the previous sections we have investigated operators T : X → Y mainly
in the general case of separable possibly infinite-dimensional Banach spaces
X, Y . In this section we want to investigate whether we can improve our
results in case of finite-dimensional spaces X, Y . First of all we will prove
that we can restrict ourselves to the spaces X = Fn and Y = Fm since any n-
dimensional computable normed space X is computably isomorphic to Fn . As
a preparation we prove that any finite-dimensional computable Banach space
has a computable algebraic basis. The proof is based on the Lemma of Riesz
[GP65].

Proposition 14.1 (Computable basis) Let X be an n–dimensional com-
putable Banach space. Then there exist computable vectors x1, ..., xn ∈ X such
that (x1, ..., xn) is a vector space basis of X.

Proof. Consider the computable Banach space (X, || ||, e). Let i1, ..., ik ∈ N

be such that (ei1, ..., eik) is a linear independent tuple of vectors of maximal
cardinality k. If k = n then (ei1, ..., eik) is a basis of X and we are finished.
Thus, let us assume k < n and let L be the linear span of {ei1, ..., eik}. Since k
is maximal with the property above, it follows that ei ∈ L for all i ∈ N. Now
on the one hand the linear span of range(e) is dense in X and thus L = X
and on the other hand k < n implies that L is a proper linear subspace of X
and hence by the Lemma of Riesz there exists some point x ∈ X such that
dL(x) = infy∈L ||x − y|| = 1 and hence x 6∈ L. Contradiction! 2

If (x1, ..., xn) is a vector space basis with computable vectors x1, ..., xn ∈ X,
then we will call it a computable vector space basis. We recall that any finite-
dimensional normed space is separable and complete, i.e. a separable Banach
space. We will use the basis (e1, ..., en) of Fn , as defined in Proposition 3.8(1).

Theorem 14.2 (Finite-dimensional computable Banach spaces) Let X
be an n–dimensional computable Banach space with a computable vector space
basis (x1, ..., xn). Then the unique linear function f : X → Fn with f(xi) := ei

is a computable isomorphism, i.e. f as well as f−1 are computable.

Proof. Since in finite-dimensional Banach spaces any linear function is con-
tinuous, ||f || exists. Since f is bijective, we obtain ||f || > 0. Let x ∈ X and
a precision k ∈ N be given. Since X is a computable normed space, we can
effectively find coefficients a1, ..., an ∈ F such that ||∑n

i=1 aixi − x|| < 1
||f ||2

−k.
By linearity of f it follows∣∣∣∣∣f(x) −

n∑
i=1

aiei

∣∣∣∣∣ ≤ ||f || ·
∣∣∣∣∣
∣∣∣∣∣x −

n∑
i=1

aixi

∣∣∣∣∣
∣∣∣∣∣ < 2−k.
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Since addition and scalar multiplication is computable in Fn , we can compute∑n
i=1 aiei and this approximates f(x) with precision 2−k . Thus, f is com-

putable. Computability of the inverse f−1 can be proved analogously. 2

This theorem allows to restrict our investigation of finite-dimensional spaces
to the cases X = Fn and Y = Fm . Elements of computable linear algebra for
the finite-dimensional case can be found in [BZ00, ZB00, ZB01].

14.1 The Finite-Dimensional Open Mapping Theorem

In this subsection we will show that we can improve our results on the uniform
computable version of the Open Mapping Theorem in case of finite-dimensional
target spaces. We recall that O(T ) : O(X) → O(Fm), U 7→ T (U) is the
operation associated with any open map T : X → Fm .

Theorem 14.3 (Finite-dimensional Open Mapping Theorem) Let X
be a computable normed space and m ≥ 1 be a natural number. The map

Ω : T 7→ O(T ),

which is defined for all linear bounded and surjective operators T : X → Fm ,
is ([δX → δm

F ], [δO(X) → δO(Fm)])–computable.

Proof. We consider the real-valued case F = R. Given a linear bounded
and surjective operator T : X → Rm, it suffices to find some rational r > 0
such that B(0, r) ⊆ TB(0, 1). We recall that by the classical Open Mapping
Theorem T is open and thus the desired result follows by Theorem 5.5. It
is easy to see that there exists a computable sequence f : N → X such that
range(f) is dense in B(0, 1). Thus, by continuity of T the sequence T ◦ f is
dense in TB(0, 1). We define a partial relation < on Rm by

(x1, ..., xm) < (y1, ..., ym) : ⇐⇒ (∀i = 1, ..., m) 1 <
yi

xi
.

Since Rm is endowed with the maximum metric, the ball B(0, r) is an open
cube with vertices v1, ..., v2m and all components of the vertices vi have absolute
value r. Moreover, B(0, r) is the interior of the convex hull conv{v1, ..., v2m}
of v1, ..., v2m. If there are vectors x1, ..., x2m ∈ TB(0, 1) such that xi > vi for
all i = 1, ..., 2m, then we obtain

B(0, r) ⊆ conv{v1, ..., v2m} ⊆ conv{x1, ..., x2m} ⊆ TB(0, 1),

where the last inclusion holds since T is linear and thus TB(0, 1) is convex
(as image of the convex ball B(0, 1)). On the other hand, since T is open
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and T (0) = 0, there is always some s > 0 such that B(0, s) ⊆ TB(0, 1) and
thus there are points x1, ..., x2m ∈ range(Tf) which approximate the vertices
of B(0, s) with distance less than s

2
. Thus, we obtain xi < vi for the ver-

tices x1, ..., x2m of the ball B(0, r) with r := s
2
. Altogether, this proves that

it suffices to find vectors x1, ..., x2m ∈ range(Tf) such that xi < vi. Given
T ∈ C(X,Rm), we can effectively find Tf by evaluation and type conver-
sion. Since < is obviously an r.e. open subset of Rm × Rm and the mapping
V :⊆ Q → (Rm)2m

, r 7→ (v1, ..., v2m), which maps each r > 0 to the vertices
of the ball B(0, r) is computable, we can effectively find some r > 0 and
n1, ..., n2m ∈ N such that xi > vi holds for the points xi := Tf(ni) and this r
actually fulfills B(0, r) ⊆ TB(0, 1). The complex case F = C can be deduced
from the real number case, since C can be identified with R2 for the purposes
of this proof (C is endowed with the Euclidean metric and R2 with the maxi-
mum metric but since BC (x, r) ⊆ BR2(x, r) holds for the corresponding balls,
no problem occurs). 2

A similar result can be proved in case of analytic functions too (cf. the
Effective Open Mapping Theorem 4.3 in [Her99]). Together with Theorem
6.4 and Theorem 14.2 we obtain the following computable version of Banach’s
Inverse Mapping Theorem using the composition ω−1 ◦ Ω.

Corollary 14.4 (Finite-dimensional Inverse Mapping Theorem) Let
X, Y be finite-dimensional computable normed spaces. The mapping

ι :⊆ C(X, Y ) → C(Y, X), T 7→ T−1,

which is defined for all linear (and bounded) bijective operators T : X → Y , is
([δX → δY ], [δY → δX])–computable.

It should be observed that it would be not strengthening to demand that the
space X or the space Y is finite-dimensional since in this case a bijective linear
operator T : X → Y can only exist if X and Y are of the same finite dimension
n. Using the latter fact we could alternatively conclude this corollary from
the special case X = Y = Fn by virtue of Theorem 14.2. Finally, the case
X = Y = Fn can easily be proved directly using a matrix representation of T
(cf. [ZB00, BZ00, ZB01]).

From the previous corollary we can especially deduce that our main source
for counterexamples, the class of diagonal operators Ta : `p → `p in Lemma
5.6 and Proposition 5.7, cannot be replaced by some other class of operators
Ta : X → Y with finite-dimensional X or Y (cf. Corollary 6.5).
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14.2 The Finite-Dimensional Graph Theorem

In Theorem 8.3 we have proved that the mapping

graph : C(X, Y ) → A(X × Y ), T 7→ graph(T )

is computable, while Theorem 8.5 shows that the inverse mapping graph−1 is
not continuous in case X = Y = `p. In this subsection we want to study how
the situation changes in the finite-dimensional case. Our aim is to prove a
theorem which shows that in case Y = Fn the inverse becomes computable
too (which is a generalization of Exercise 6.1.8 in [Wei00]). Therefore, we
will use the hyperspace K(X) := {K ⊆ X : K non-empty and compact} of
non-empty compact subsets of a metric space X, endowed with the Hausdorff
metric dK : K(X) ×K(X) → R, defined by

dK(A, B) := max

{
sup
a∈A

dB(a), sup
b∈B

dA(b)

}
.

If (X, d, α) is a computable metric space, then a standard numbering αK of
the set Q of finite subsets of range(α) can be defined by αK〈k, 〈n0, ..., nk〉〉 :=
{α(n0), ..., α(nk)}. It is easy to see that under these assumptions (K(X), dK, αK)
is a computable metric space too [Bra99b]. In the following we assume that
K(X) is endowed with the corresponding Cauchy representation δK. It is
easy to prove that the canonical injection K(X) ↪→ A(X) is computable
[Bra99b, BP00]. As a preparation of our main result we formulate a lemma.
Here, ∂A denotes the border of a subset A ⊆ X of a metric space X.

Lemma 14.5 Let n ≥ 1 a natural number. The function

I :⊆ Fn ×R→ K(Fn), (y, ε) 7→ ∂B(y, ε),

defined for all (y, ε) ∈ Fn ×R with ε > 0, is computable.

The proof is straightforward. Now we are prepared to prove the following
theorem. We will call a metric space X everywhere connected, if all open balls
B(x, ε) are connected subsets of X.

Theorem 14.6 (Finite-dimensional Graph Theorem) Let X be an every-
where connected computable metric space and let n ≥ 1 be a natural number.
The mapping

graph : C(X, Fn) → A(X × Fn), T 7→ graph(T )

as well as its inverse graph−1 :⊆ A(X × Fn) → C(X, Fn) are computable.
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Proof. We consider the computable metric space (X, d, α). Computability of
graph follows from Theorem 8.3. We investigate the mapping graph−1. Thus,
let f : X → Fn be a continuous function. We can assume that graph(f)
is given as point graph(f) ∈ A(X × Fn). Furthermore, let x ∈ X and a
precision k ∈ N be given. We prove that we can effectively evaluate f(x) up
to precision 2−k which implies by type conversion the desired result. Since
graph(f) is given as point of A(X × Fn), we can, on the one hand, find points
(xi, yi) ∈ range(α) × Qn

F and rational numbers ri > 0 such that

graph(f)c = (X×Fn)\graph(f) =

∞⋃
i=0

B((xi, yi), ri) =

∞⋃
i=0

(B(xi, ri) ×B(yi, ri))

and, on the other hand, we can enumerate all positive information, i.e. all
“rational” balls U = B((x′, y), r) = B(x′, r) × B(y, r) ⊆ X × Fn such that
U ∩ graph(f) 6= ∅. Given a compact subset K ∈ K(Fn) such that K ⊆⋃∞

i=0 B(yi, ri), the computable Heine-Borel Theorem (cf. Theorems 4.6 and
4.10 in [BW99]) ensures that we can effectively find a natural number m ∈ N

such that K ⊆ ⋃m
i=0 B(yi, ri). Now the evaluation of f(x) up to precision 2−k

works as follows: we systematically search for some (x′, y) ∈ range(α) × Qn
F,

some rational numbers r > 0, t ≥ 1 and natural numbers n0, ..., nm ∈ N such
that

(1) U := B(x′, r) ×B(y, r),

(2) U ∩ graph(f) 6= ∅,
(3) x ∈ B(x′, r),

(4) d(xni , x
′) + r < rni for i = 0, ..., m,

(5) ∂B(y, tr) ⊆ ⋃m
i=0 B(yni, rni),

(6) tr < 2−k.

If such x′, y, r, t, n0, ..., nm exist, then we can effectively find such values by
the previous considerations and the previous lemma. Now we claim that such
values always exist and ||f(x)− y|| < 2−k if (1) to (6) is fulfilled.

Thus, let us first assume that (1) to (6) holds. It is obvious that (4) implies
B(x′, r) ⊆ ⋂m

i=0 B(xni, rni) and thus by (5) it follows

B(x′, r) × ∂B(y, tr) ⊆
m⋃

i=0

(B(xni, rni) ×B(yni, rni)) ⊆ graph(f)c.

Thus, fB(x′, r) ⊆ B(y, tr)∪ (Fn \B(y, tr)) and hence fB(x′, r) is covered by a
disjoint union of open subsets. Since B(x′, r) is connected by presumption and
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f is continuous, it follows that fB(x′, r) is connected too and thus fB(x′, r)
has empty intersection with either B(y, tr) or Fn \ B(y, tr). By (1) and (2)
there is some x′′ ∈ B(x′, r) such that f(x′′) ∈ B(y, r) ⊆ B(y, tr) and hence
fB(x′, r) ∩ B(y, tr)c = ∅. This implies f(x) ∈ B(y, tr) by (3) and hence
||f(x) − y|| < tr < 2−k by (6).

Now we still have to prove that there are always values x′, y, r, t, n0, ..., nm

such that (1) to (6) are fulfilled. Therefore, let 0 < s < 2−k be a rational num-
ber. Then ∂B(f(x), s) ⊆ ⋃{B(yi, ri) : i ∈ N and x ∈ B(xi, ri)} and by com-
pactness there exist n0, ..., nm ∈ N such that ∂B(f(x), s) ⊆ ⋃m

i=0 B(yni, rni)
and x ∈ ⋂m

i=0 B(xni, rni) =: V . Thus, V is an open neighbourhood of x and
since range(α) is dense in X we can choose some x′ ∈ range(α) and some
rational r with 0 < r < s such that d(x, x′) < r and d(xni , x

′) + r < rni for
all i = 0, ..., m, especially x ∈ B(x′, r) ⊆ V . Hence there exists some y ∈ Qn

F

such that d(f(x), y) < r and still ∂B(y, s) ⊆ ⋃m
i=0 B(yni, rni). For this choice

of x′, y, r, n0, ..., nm, t := s
r

and U := B((x′, y), r) all conditions (1) to (6)
are fulfilled: (1) is the definition of U . (2) and (3) holds since by definition
x ∈ B(x′, r) and f(x) ∈ B(y, r) and thus (x, f(x)) ∈ graph(f) ∩ U . (5) holds
by choice of y and t and (4) by choice of x′. (6) holds since tr = s < 2−k by
choice of s and definition of t. 2

In case that all balls in X are relatively compact, e.g. if X = Fm , we
could simplify this proof. In this case the finite subcovering, i.e. the number
m, could be determined uniformly for a whole neighbourhood B(x, r) of x.
But this simpler version would be to weak for our purposes since infinite-
dimensional spaces X are not locally compact and hence their balls are not
relatively compact in general. However, computable normed spaces X are
everywhere connected since all balls are convex. As combination of the previous
theorem with Theorem 8.3 and Lemma 8.4 we obtain the following corollary
which shows that inversion is effective for finite-dimensional source spaces even
in the non-linear case.

Corollary 14.7 Let Y be an everywhere connected computable metric space
and n ≥ 1 be a natural number. The mapping

ι :⊆ C(Fn , Y ) → C(Y, Fn), T 7→ T−1,

defined for all homeomorphisms T : Fn → Y , is ([δn
F → δY ], [δY → δn

F])–
computable.

14.3 Computing Bounds

In Theorem 9.7 we have seen that that mapping T 7→ ||T ||, defined for linear
bounded operators T : X → Y , is not continuous in general. It is easy to
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see that this situation changes if X is finite-dimensional. The following result
improves Theorem 9.3 for the finite-dimensional case.

Theorem 14.8 (Computable bound) Let Y be a computable normed space
and let n ≥ 1 be a natural number. The partial map

|| || :⊆ C(Fn , Y ) → R, T 7→ ||T ||

is computable.

Proof. Given T : Fn → Y we can effectively find the function S := || ||◦T , i.e.
S : Fn → R, x 7→ ||Tx|| by evaluation and type conversion since || || : Y → R

is computable. Now B(0, 1) is a compact recursive subset of Fn by Lemma 9.2
and thus

||T || = sup
x∈B(0,1)

||Tx|| = max S(B(0, 1))

can be computed (e.g. by virtue of Corollary 6.2.5 of [Wei00]). 2

Theorem 9.11 already proves that a corresponding improvement of the
semi-computable Uniform Boundedness Theorem 9.8 is impossible. As a corol-
lary of the previous theorem we immediately obtain that the bound of any
computable bounded operator T : Fn → Y is a computable real number.

Corollary 14.9 Let Y be a computable normed space and let n ≥ 1 be a
natural number. If T : Fn → Y is a computable bounded operator, then ||T || is
a computable real number.

While finite-dimensionality of the source space suffices to guarantee com-
putability of the bound, Example 13.2 shows that finite-dimensionality of the
target space does not help.

15 The Non-Separable Case

Our whole investigation of Banach space principles is focused on infinite-
dimensional separable Banach spaces. Separability is necessary since com-
putable Banach spaces are separable by definition. However, we have also
successfully computed with some non-separable Banach spaces as `∞, B(N, Y )
and B(X, Y ) (for infinite-dimensional X). Now two natural questions appear:

(1) Can we extend the notion of a computable Banach space to non-separable
spaces in a reasonable way?
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(2) Can we extend our results on Banach space principles to this definition?

In the following we will answer the first question in the affirmative, by
presenting a definition of a general computable Banach space, which generalizes
our definition for the separable case and which places the ad hoc treatment of
`∞, B(N, Y ) and B(X, Y ) in a uniform framework. On the other hand, this
specific generalized definition leads to a negative answer concerning the second
question at least if we want to have both: a natural duality result as expressed
in the computable version of Landau’s Theorem 13.4, as well as a computable
version of Banach’s Inverse Mapping Theorem as formulated in Corollary 6.3.

The possibility to handle non-separable normed spaces is mainly limited
by the following fact (cf. Lemma 8.1.1 in [Wei00]).

Proposition 15.1 Each represented metric space (X, δ) with a continuous
representation δ is separable.

This follows since separability of the Cantor space leads to separability of
the represented space. As a consequence one obtains the following corollary.

Corollary 15.2 Each represented normed space (X, δ) such that

(1) the norm || || : X → R is (δ, δR)–continuous and

(2) the vector space subtraction − : X × X → X is ([δ, δ], δ)–continuous,

is separable.

The proof follows from the observation that the two conditions imply that
the representation is continuous (cf. Lemma 8.1.1 in [Wei00]). The following
result shows that the problem is not just a topological problem since it does
not disappear if we are only interested in computable points.

Proposition 15.3 There exists no representation δ of `∞ such that

(1) the δ–computable points x ∈ `∞ are exactly the δNF–computable points
with computable norm ||x||∞,

(2) the vector addition + : `∞ × `∞ → `∞ maps δ–computable points to
δ–computable points.

Proof. Let us assume that δ is a representation of `∞ such that (1) and
(2) holds. Let x = (x0, x1, ...) ∈ `∞ be some δNF–computable point such that
x0 ∈ F is computable but ||x||∞ is not computable and let r > ||x||∞ be
some rational number. By (1) y = (−2r, 0, 0, ...) ∈ `∞ is δ–computable and
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z = (z0, z1, ...) := x − y is δNF–computable. Since |x0| ≤ ||x||∞ < r we obtain
that ||z||∞ = |z0| = |x0 + 2r| is computable and hence z is also δ–computable
by (1). By (2) it follows that x = z + y is δ–computable too which is a con-
tradiction! 2

Since the δ`∞–computable points are exactly the δNF–computable points with
computable norm, we obtain the following corollary.

Corollary 15.4 The δ`∞–computable points are not closed under addition.

Regarding these negative results, we have to decide whether we want to
keep computability of the norm or of the vector space operations in case of
non-separable normed spaces. To be as general as necessary, we take the
following definition for a general computable normed space.

Definition 15.5 (General computable normed space) A tuple (X, || ||, δ)
is called a general computable normed space, if (X, δ) is a computable vector
space and Lim :⊆ XN→ X is computable.

We recall that

dom(Lim) = {(xn)n∈N : (∀i > j) ||xi − xj|| ≤ 2−j}.

If in the situation of the definition (X, || ||) is even a Banach space, then we
call (X, || ||, δ) a general computable Banach space. Each general computable
normed space gives rise to at least two canonical representations which yield
certain computability properties of the norm.

Definition 15.6 Let (X, || ||, δ) be a general computable normed space. We
define two representations δ=, δ> of X by

(1) δ=〈p, q〉 = x : ⇐⇒ δ(p) = x and δR(q) = ||x||,

(2) δ>〈p, q〉 = x : ⇐⇒ δ(p) = x and δR(q) ≥ ||x||.

The next proposition shows that δ= just contains sufficient information on
the represented points to compute their norm.

Proposition 15.7 (Effective Normability) Let (X, || ||, δ) be a general com-
putable normed space. Then δ= ≤ δ> ≤ δ and δ= is maximal among all repre-
sentations below δ which make the norm || || : X → R computable.
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Proof. Obviously, δ= ≤ δ> ≤ δ holds; the first translation is realized by
the identity, the second by the projection on the first component. The norm
becomes computable w.r.t. δ= and is realized by the projection on the second
component. Now let δ′ ≤ δ be an arbitrary representation which makes the
norm computable. If F :⊆ Σω → Σω realizes the translation of δ′ into δ and
G :⊆ Σω → Σω realizes the norm w.r.t. δ′, then H :⊆ Σω → Σω, defined by
H(p) := 〈F (p), G(p)〉, translates δ′ to δ=. Hence δ= is maximal below δ among
all representations which make the norm computable. 2

The previous proposition highly relies on the fact that the norm is a unary
function. A unary function can always be effectivized by a construction anal-
ogously to the definition of δ=, but the same construction does not work for
functions which depend on two inputs. This can be deduced from Proposition
15.1 using some non-separable metric. The following example additionally
admits a simple limit operation.

Example 15.8 Let (R, δ) be a represented space and let d : R× R → R be
the discrete metric on R, i.e. d(x, x) = 0 and x 6= y =⇒ d(x, y) = 1 for all
x, y ∈ R. Then Lim :⊆ RN → R is simply the operation Lim(xn)n∈N = x1

and thus computable w.r.t. any representation and hence w.r.t. δ. But there
is no representation δ′ of R such that d becomes computable w.r.t. δ′, since
otherwise {(x, y) ∈ R×R : x = y} would be a δ′–r.e. set, which is impossible
(cf. Theorem 4.1.16 in [Wei00]).

Alternatively, one could argue with Proposition 15.1 and the fact that the
discrete space (R, d) is non-separable. The next observation shows that each
computable normed space is especially a general computable normed space.
Thus, the notion of a general computable normed space actually generalizes
the ordinary notion.

Proposition 15.9 (Computable normed spaces) If (X, || ||, e) is a com-
putable normed space with Cauchy representation δ, then (X, || ||, δ) is a gen-
eral computable normed space and δ= ≡ δ> ≡ δ.

By definition of computable normed spaces it follows that the Cauchy rep-
resentation δ yields a computable vector space (X, δ). By Proposition 3.2 the
limit operation and the metric, induced by the norm, are computable w.r.t. the
Cauchy representation δ. The latter implies that the norm itself is computable
since 0 ∈ X is a computable point. By Proposition 15.7 this implies δ ≤ δ= and
thus δ ≡ δ=. The next proposition shows that a general computable normed
space keeps as much of the computability properties of a computable normed
space as possible (in view of Corollary 15.2).
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Proposition 15.10 Let (X, || ||, δ) be a general computable normed space.
Then

(1) || || : X → R is (δ=, δR)–computable,

(2) Lim :⊆ XN→ X is (δ=N, δ=)–computable,

(3) + : X ×X → X, (x, y) 7→ x + y is ([δ>, δ>], δ>)–computable,

(4) · : F×X → X, (a, x) 7→ a·x is ([δF, δ
=], δ=)– and ([δF, δ

>], δ>)–computable,

(5) 0 ∈ X is a δ=–computable point.

Proof. The norm is computable w.r.t. δ= by definition. By assumption,
the limit operation Lim is computable w.r.t. δ. We have to prove that it is
computable w.r.t. δ= too. In case that (xn)n∈N is a convergent sequence with
limit x and ||xi − xj|| ≤ 2−j for all i > j, we obtain

||x|| =
∣∣∣∣∣∣ lim

n→∞
xn

∣∣∣∣∣∣ = lim
n→∞

||xn||

since the norm || || is continuous and

| ||xi|| − ||xj|| | ≤ ||xi − xj|| ≤ 2−j

for all i > j. Thus, using evaluation and type conversion we can prove that
the limit operation Lim is computable w.r.t. δ=, since it is computable w.r.t. δ
and the limit operation on real numbers is computable w.r.t. δR. Analogously,
computability of the scalar multiplication w.r.t. δ= follows from ||ax|| = |a|·||x||
because the scalar multiplication is computable w.r.t. δ and multiplication on
the real numbers is computable w.r.t. δR. Analogously, computability of the
scalar multiplication w.r.t. δ> follows from s ≥ ||x|| =⇒ |a|s ≥ ||ax|| and
computability of addition from

s ≥ ||x||, t ≥ ||y|| =⇒ s + t ≥ ||x||+ ||y|| ≥ ||x + y||.
Finally, the computable points w.r.t. δ= are exactly the δ–computable points
with computable norm. Especially, 0 ∈ X is δ–computable because of ||0|| = 0.

2

Thus, on the one hand, δ= is the optimal representation of X from the
topological point of view, since norm and limit operation become computable
(and the algebraic operations besides addition are computable too). On the
other hand, δ> is the optimal representation of X from the algebraic point
of view, since all algebraic operations become computable and additional δ>

allows to compute at least upper bounds on the norm of points. Corollary 15.2
yields the following corollary.
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Corollary 15.11 If (X, || ||, δ) is a non-separable general computable normed
space, then δ= 6≡t δ>, the norm || || is not continuous w.r.t. δ> and vector
space addition is not continuous w.r.t. δ=.

Thus, in non-separable normed spaces there is a “computational gap” be-
tween the algebraic structure and the topological structure of the space. We
have already seen in Proposition 15.9 that this gap does not exist in case of
ordinary computable normed space. Next we will show that any general com-
putable normed space with δ=–computable addition which is subject to an
additional separability condition gives rise to an ordinary computable normed
space.

Definition 15.12 (Effectively separable) A general computable normed
space (X, || ||, δ) is called effectively separable w.r.t. e : N → X, if e is a
δ=–computable sequence whose linear span is dense in X.

Since an ordinary computable normed space has as standard representation
its Cauchy representation, we can obtain the following stability result.

Theorem 15.13 (Stability Theorem) If (X, || ||, δ) is a general computable
normed space which is effectively separable w.r.t. e : N → X and if the vector
space addition is computable w.r.t. δ=, then (X, || ||, e) is a computable normed
space and δX ≡ δ= for the corresponding Cauchy representation δX.

Proof. Let δX denote the Cauchy representation of (X, || ||, e). We have to
prove that the metric space (X, d, αe) is computable, where d is the metric
induced by || ||. But computability of d ◦ (αe × αe) follows from the fact that
e is computable w.r.t. δ=, from Proposition 15.10, which guarantees that the
norm and scalar multiplication is computable w.r.t. δ= and from the presump-
tion that the vector space addition is computable w.r.t. δ=. Especially, this
implies that d is computable w.r.t. δX; it is easy to see that with the help of
e one can construct a computable δX–name of 0 and thus the norm is com-
putable w.r.t. δX too. Moreover, the limit operation is computable w.r.t. δ= by
Proposition 15.10 and thus one can directly prove δX ≤ δ=. Since the metric d
is ([δ=, δ=], δR)–computable, it follows that d is also ([δ=, δX], δR)–computable
and thus δ= ≤ δX by Proposition 3.2(1). Altogether, this implies δX ≡ δ= and
this implies again by Proposition 15.10 and by presumption that (X, δX) is a
computable vector space. 2

This theorem is closely related to Pour-El and Richards Stability Lemma
[PER89] which is a special case of more general stability results for topolog-
ical structures [Bra99c, Bra99b]. In the following we will show that general
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computable normed spaces fulfill some closure properties of normed spaces.
Besides subspace and product space construction we will also prove that the
dual space of an ordinary computable normed space is a general computable
normed space. We start with the subspace construction.

Proposition 15.14 (Subspace) If (X, || ||, δ) is a general computable normed
space with a linear subspace Y ⊆ X, then the subspace (Y, || ||Y , δ|Y ) is a
general computable normed space too and the canonical injection Y ↪→ X is
computable. Moreover, δ=|Y = δ|Y = and δ>|Y = δ|Y>.

Here || ||Y denotes the restriction of || || to Y in the source and δ|Y denotes
the restriction of δ to Y in the target. The proof follows from the fact that all
subspace operations, including the limit, are defined as restriction. We proceed
with the product space construction.

Proposition 15.15 (Product space) If (X, || ||X, δX) and (Y, || ||Y , δY ) are
general computable normed spaces, then the product space (X×Y, || ||, [δX, δY ])
with ||(x, y)|| := ||x||X + ||y||Y is a general computable normed space too. The
canonical projections pr1 : X × Y → X and pr2 : X × Y → Y are computable.
Moreover, [δ=

X, δ=
Y ] ≤ [δX, δY ]= and [δ>X, δ>Y ] ≡ [δX, δY ]>.

Proof. By assumption, (X, δX) and (Y, δY ) are computable vector spaces with
computable limit operations. Since the vector space operations are defined
componentwise, it follows that (X × Y, [δX, δY ]) is a computable vector space
too. Now let (xn, yn)n∈N be a rapidly converging sequence in X × Y , i.e.
||(xi, yi) − (xj, yj)|| = max{||xi − xj||X, ||yi − yj||Y } ≤ 2−j for all i > j. It
follows ||xi − xj||X ≤ 2−j and ||yi − yj||X ≤ 2−j for all i > j. Thus, the limit
operation of (X × Y, || ||) is also computable w.r.t. [δX, δY ] since it suffices to
compute the limit componentwise. The projections are obviously computable.
We still have to prove the statements on reducibility. Since max : R×R→ R is
computable, there exists a computable realization G :⊆ Σω → Σω. We define
F :⊆ Σω → Σω by F 〈〈p, q〉, 〈r, s〉〉 := 〈〈p, r〉, G〈q, s〉〉. Then F is computable
and we obtain

[δ=
X, δ=

Y ]〈〈p, q〉, 〈r, s〉〉 = (δ=
X〈p, q〉, δ=

Y 〈r, s〉) = (x, y)

=⇒ δX(p) = x, δR(q) = ||x||X and δY (r) = y, δR(s) = ||y||Y
=⇒ [δX, δY ]〈p, r〉 = (x, y) and δRG〈q, s〉 = max{||x||X, ||y||Y } = ||(x, y)||
=⇒ [δX, δY ]=F 〈〈p, q〉, 〈r, s〉〉 = [δX, δY ]=〈〈p, r〉, G〈q, s〉〉 = (x, y).

Hence, [δ=
X, δ=

Y ] ≤ [δX, δY ]=. Analogously, one can prove [δ>X, δ>Y ] ≤ [δX, δY ]>.
On the other hand, define H :⊆ Σω → Σω by H〈〈p, r〉, t〉 := 〈〈p, t〉, 〈r, t〉〉.
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Then H is computable and we obtain

[δX, δY ]>〈〈p, r〉, t〉 = (x, y)

=⇒ [δX, δY ]〈p, r〉 = (x, y) and δR(t) ≥ ||(x, y)|| = max{||x||X, ||y||Y }
=⇒ δX(p) = x, δY (r) = y and δR(t) ≥ ||x||X, δR(t) ≥ ||y||Y
=⇒ [δ>X, δ>Y ]H〈〈p, r〉, t〉 = [δ>X, δ>Y ]〈〈p, t〉, 〈r, t〉〉 = (x, y).

Hence, [δX, δY ]> ≤ [δ=
X, δ=

Y ]. 2

Now we will discuss operator spaces. Even the dual space X ′ = B(X, F)
of a separable normed space X is not necessarily separable. Thus it follows
that computable normed spaces are not closed under dual space construction.
However, the operator space B(X, Y ) of computable normed spaces X, Y is at
least a general computable normed space as the following result shows.

Proposition 15.16 (Operator space) If X, Y are computable normed spa-
ces with Cauchy representations δX , δY , then the space of linear bounded op-
erators (B(X, Y ), || ||, δ) with the operator norm ||T || := sup||x||=1 ||Tx|| and

representation δ := [δX → δY ]|B(X,Y ) is a general computable Banach space.
Moreover, δB(X,Y ) = δ=.

Proof. We have to prove that the space (B(X, Y ), δ) is a computable vec-
tor space with a computable limit operation Lim :⊆ B(X, Y )N → B(X, Y ).
Since vector space addition + : Y × Y → Y, (x, y) 7→ x + y and scalar mul-
tiplication · : F × Y → Y, (a, y) 7→ a · y are computable w.r.t. δY , it follows
by evaluation and type conversion that the operator vector space addition
+ : B(X, Y ) × B(X, Y ) → B(X, Y ), (f, g) 7→ f + g and scalar multiplication
· : F × B(X, Y ) → B(X, Y ), (a, f) 7→ a · f are computable w.r.t. [δX → δY ]
too. Since 0 ∈ Y is a δY –computable point, the zero function z ∈ B(X, Y )
is a computable point too. Now let us assume that (Tn)n∈N is a sequence in
B(X, Y ) which converges to some T ∈ B(X, Y ) such that ||Ti − Tj|| ≤ 2−j

for all i > j. Then ||Tix − Tjx|| ≤ ||Ti − Tj|| · ||x|| ≤ 2−j ||x||. Given
x ∈ X w.r.t. δX, we can effectively find some k ∈ N such that ||x|| ≤ 2k

and thus ||Ti+kx − Tj+kx|| ≤ 2−j−k ||x|| ≤ 2−j and limi→∞ Ti+kx = Tx. Since
LimY :⊆ Y N→ Y is computable w.r.t. δY , we can effectively evaluate the limit
operation Lim :⊆ B(X, Y )N → B(X, Y ). By type conversion it follows that
Lim is computable w.r.t. [δX → δY ] too. 2

The same proof would work in case of general computable normed spaces
(X, δX) and (Y, δY ) with δ = [δ>X → δ>Y ]. However, in this case it is not
clear which space is represented by δ. If δ> is an admissible representation
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of an admissible topology, i.e. a topology which makes all linear functionals
f : X → F continuous, then δ = [δ>X → δF] could at least be restricted to a
dual space representation. But it deserves further investigations to study this
question. Here, we only formulate a simple corollary of the previous result.

Corollary 15.17 (Dual space) If X is a computable normed space with
Cauchy representation δ, then the dual space (X ′, || ||′, δ′) with X ′ = B(X, F),
the operator norm ||f ||′ := sup||x||=1 |f(x)| and δ′ := [δ → δF]|X ′

is a general
computable Banach space. Moreover, δX ′ = δ′=.

As a last example of a closure property we discuss the space of bounded
sequences. The proof is a simplified version of the previous proof.

Proposition 15.18 (Bounded sequences) If (Y, δY ) is a general computable
normed space, then the space of bounded sequences (B(N, Y ), || ||, δ) with the
supremum norm ||(yn)n∈N|| := supn∈N ||yn|| and δ := δNY |B(N,Y ) is a general
computable normed space. Moreover, δB(N,Y ) = δ=.

Proof. We have to prove that the space (B(N, Y ), || ||, δ) is a computable vec-
tor space with a computable limit operation Lim :⊆ B(N, Y )N → B(N, Y ).
Since vector space addition + : Y × Y → Y, (x, y) 7→ x + y and scalar
multiplication · : F × Y → Y, (a, y) 7→ a · y are computable w.r.t. δY , it
follows by evaluation and type conversion that the sequence vector space ad-
dition + : B(N, Y ) × B(N, Y ) → B(N, Y ), (f, g) 7→ f + g and scalar mul-
tiplication · : F × B(N, Y ) → B(N, Y ), (a, f) 7→ a · f are computable too
w.r.t. δNY = [δN → δY ]. Since 0 ∈ Y is a δY –computable point, the zero
sequence z ∈ B(N, Y ) is a computable point too. Now let us assume that
(yn)n∈N = ((ykn)k∈N)n∈N is a sequence in B(N, Y ) which converges to some
z = (zk)k∈N ∈ B(N, Y ) such that ||yi − yj || ≤ 2−j for all i > j. Then
||yki − ykj|| ≤ supk∈N ||yki − ykj || = ||yi − yj|| ≤ 2−j for all i > j and thus
limi→∞ yki = zk for all k ∈ N. Since LimY :⊆ Y N→ Y is computable w.r.t. δY ,
we can effectively evaluate the limit operation Lim :⊆ B(N, Y )N → B(N, Y ).
By type conversion it follows that Lim is computable w.r.t. δNY = [δN → δY ]
too. 2

Especially, we obtain the following corollary on the space `∞.

Corollary 15.19 (`∞, δ) with δ = δNF |`∞ is a general computable normed space
and δ`∞ = δ=.

We proceed with a brief discussion of admissibility properties of represen-
tations of general computable normed spaces. We directly can conclude the
following result on admissibility with the help of closure properties proved by
Schröder (in Section 4.2 and 4.5 of [Sch00]).
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Theorem 15.20 (Admissibility) Let (X, || ||, δ) be a general computable
normed space and let δ be an admissible representation of X with respect to
some T1–topology τ . Then

(1) δ= is admissible with respect to the weakest topology τ= such that the
identity id : (X, τ=) ↪→ (X, τ ) and the norm || || : (X, τ=) → R become
continuous,

(2) δ> is admissible with respect to the inductive limit topology τ> = lim
−→

τk

of the subtopologies τk of τ on Xk := {x ∈ X : ||x|| ≤ k} for all k ∈ N.

Here X =
⋃∞

k=0 Xk and lim
−→

τk := {U ⊆ X : (∀k) U ∩ Xk ∈ τk}. If,

in addition to the assumptions of the theorem, τ|| || ⊇ τ holds for the norm
topology τ|| || of X, then we obtain

τ|| || ⊇ τ= ⊇ τ> ⊇ τ.

In view of Proposition 15.1 neither δ= nor δ> can be admissible w.r.t. the
norm topology τ|| || in case of a non-separable general computable normed
space (X, || ||, δ). Thus, the previous statement expresses in a certain sense
the best what we can expect. Especially, our representations δ`∞ , δB(X,Y ) and
δB(N,X), defined for computable normed spaces X, Y , are all admissible w.r.t.
the corresponding topologies τ=.

However, we still have to justify our ad hoc choice of representations.
δ`∞ , δB(X,Y ) and δB(N,X). All these representations are of type δ= and not of
type δ>. One such justification can be seen in the computable version of Lan-
dau’s Theorem (i.e. Theorem 13.3 and Corollary 13.4). We reformulate these
results in terms of δ= and δ>.

Corollary 15.21 (Computable Theorem of Landau) Let p, q > 1 be com-
putable real numbers such that 1

p
+ 1

q
= 1 or p = 1 and q = ∞. And let

δp := δNF |`p and δ′p := [δ=
p → δF]|`′p.

(1) (`q , δ
=
q ) is computably isometric isomorphic to (`′p, δ

′=
p ).

(2) (`q , δ
>
q ) is computably isometric isomorphic to (`′p, δ

′>
p ).

If we accept our choice of δ`q ≡ δ=
q as standard representation of `q for

real numbers q ≥ 1 (and actually there is not much doubt that something
could be wrong with this), then (1) leads naturally to δ`′p ≡ δ′=p as standard
representation of `′p for real numbers p > 1. Then it is natural to take the
corresponding representation also in case p = 1 and in this case (1) leads to
δ`∞ ≡ δ∞ as natural standard representation for `∞. In other words: if we want
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to keep the natural computable isometric isomorphism results of Corollary
13.4, then there is no alternative to our choice of the representation of `∞ and
of the dual space representations of `′p (up to computable equivalence).

On the other hand, as we will see next, our choice of a standard rep-
resentation of `∞ makes it impossible to extend the computable versions of
Banach’s Inverse Mapping Theorem and the Closed Graph Theorem to the
non-separable case. Again we will use diagonal operators to construct coun-
terexamples. Therefore we transfer Proposition 5.7 to the non-separable case.
By `=

∞, `>∞ we denote the represented spaces (`∞, δ=), (`∞, δ>) with δ := δNF |`∞
and endowed with the corresponding final topologies τ=, τ>, respectively (see
above).

Proposition 15.22 (Diagonal operator) There exists a computable multi-
valued operation τ :⊆ R>� C(`=

∞, `=
∞) such that for any a ∈ R> with a ∈ (0, 1]

there exists some Ta ∈ τ (a) and all such Ta : `∞ → `∞ are diagonal operators
of a. The same holds true with `>∞ instead of `=

∞.

Proof. Given a real number a ∈ R> with a ∈ (0, 1], we can effectively find
a decreasing sequence (an)n∈N of rational numbers an ∈ Q such that a0 = 1
and a = infn∈Nan. We define a diagonal operator Ta : `∞ → `∞ of a by
Ta(xk)k∈N := (akxk)k∈N for all (xk)k∈N ∈ `∞. Let δ := δNF |`∞ . Using evaluation
and type conversion it follows that Ta can be effectively evaluated w.r.t. δ.
Thus, there exists some (δ>

R, [δ → δ])–computable τ with the desired property.
Since

||Tax|| ≤ ||Ta|| · ||x|| = ||x||
we directly obtain that there also exists a (δ>

R, [δ> → δ>])–computable τ . We
still have to prove that there also exists some (δ>

R, [δ= → δ=])–computable
τ . Given some x = (xk)k∈N ∈ `∞ w.r.t. δ= and a precision m ∈ N, we can
effectively find some n ∈ N such that | |xn| − ||x|| | < 2−m. Hence, we can
compute s := maxk=0,...,n |akxk| and it follows

|s − ||Tax|| | =

∣∣∣∣ max
k=0,...,n

|akxk| − sup
k∈N

|akxk|
∣∣∣∣ < 2−m

since (ak)k∈N is decreasing with ak ≤ 1 for all k ∈ N. Thus, we can also eval-
uate Ta w.r.t. δ= up to any given precision m. Using type conversion we can
actually prove that there exists an operation τ with the desired properties. 2

As a consequence we obtain the following corollary which yields some limi-
tations to possible computable versions of Banach’s Inverse Mapping Theorem
and the Closed Graph Theorem for non-separable spaces.
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Corollary 15.23 Let a ∈ (0, 1] be some left-computable real number which is
not right-computable. Then there exists a diagonal operator Ta : `∞ → `∞ of a
which is (δ`∞, δ`∞)–computable but T−1

a cannot be (δ`∞ , δ`∞)–computable since
||T−1

a e|| = 1
a

for the δ`∞–computable point e = (1, 1, 1, ...).

However, it is easy to see that this counterexample cannot be transfered to
δ> instead of δ= ≡ δ`∞ (with δ as above) since the inverse T−1

a of a (δ>, δ>)–
computable diagonal operator Ta is always (δ>, δ>)–computable too. We leave
it to further investigations to continue the study of non-separable spaces.

16 Conclusion

We will close this paper with a short survey on some of our results and a brief
discussion of related results in constructive analysis and reverse mathemat-
ics. We briefly resume our results on the Open Mapping Theorem, Banach’s
Inverse Mapping Theorem and the Closed Graph Theorem, including the finite-
dimensional and the non-separable case. Let us assume for the following that
X, Y are computable Banach spaces. Then our results on the Open Mapping
Theorem can be summarized as shown in Table 1.

T : X → Y linear bounded and surjective finite-dimensional Y general case

T computable, U r.e. open =⇒ T (U) r.e. open + +

T computable =⇒ U 7→ T (U) computable + +

T 7→ (U 7→ T (U)) computable + −

Table 1: Computable versions of the Open Mapping Theorem

Each “+” indicates a positive result and each “−” indicates a negative
result or more precisely, it indicates that the corresponding property is not
fulfilled in general in the given case. The results in the first and second row
are based on Corollary 5.4. The positive result for the finite-dimensional case
in the third row is based on Theorem 14.3 and the negative result for the
general case is based on Theorem 5.8 (or on Corollary 5.10, alternatively).

Analogously, we summarize our results on the Inverse Mapping Theorem
in Table 2. Here we can also include the non-separable case, provided that we
consider X, Y as general computable Banach spaces represented by their corre-
sponding δ= representations, as defined in Section 15. The negative results for
the non-separable case in the third column are based on Corollary 15.23. The
positive results in the first row are based on Corollary 6.3. The positive result
for the finite-dimensional case in the second row is based on Corollary 14.4
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T : X → Y lin. bounded and bijective finite-dimensional separable non-separable

T computable =⇒ T−1 computable + + −
T 7→ T−1 computable + − −

Table 2: Computable versions of Banach’s Inverse Mapping Theorem

and the negative result for the separable case is based on Corollary 6.5 (or on
Corollary 6.7, alternatively). Finally, we summarize the results on computable
versions of the Closed Graph Theorem in Table 3.

T : X → Y linear bounded finite-dimensional Y general case

graph(T ) recursive closed =⇒ T computable + +

graph(T ) 7→ T computable + −

Table 3: Computable versions of the Closed Graph Theorem

The results in the first row are based on Theorem 8.7. The positive result
for the finite-dimensional case in the second row is based on Theorem 14.6 and
the negative result for the general case is based on Theorem 8.5.

We emphasize again that all our results are based on the following point of
view of computable analysis: computability, described by Turing machines, is
considered as a further classical property of ordinary objects (points, functions,
spaces and so on). Especially, we can use the law of excluded middle and any
other classical laws of reasoning without any restrictions.

Related Results in Constructive Analysis

In Bishop’s school of constructive analysis [BB85, Bri79]4 the principles of
Banach spaces have already been studied intensively [BR87, BJM89, Ish94,
Ish97, BI98, BI01]. The underlying philosophy is somehow to develop “ordi-
nary analysis” but with intuitionistic logic (that is essentially without the law
of excluded middle). Roughly speaking, an implication arrow “=⇒” in the in-
tuitionistic setting of constructive analysis can be replaced by a “constructive
mapping” arrow “7→”. Thus, the distinctions which we have made in Tables 1,
2, 3, cannot be expressed in constructive analysis in the same way. However,
there are close relations between our results and results which have been ob-
tained in constructive analysis. On the one hand, it is likely that our negative
results (like the statement that T 7→ T−1 is not computable under certain

4For a different approach to constructive functional analysis, based on the ideas of Loren-
zen and Weyl, see [Zah78].
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assumptions) imply that the corresponding theorems cannot be proved in the
constructive setting (cf. [Tro92] for a partial transfer result). On the other
hand, theorems which can be proved in the constructive setting plus BD-N
(a principle which states that each “pseudobounded” subset of N is bounded)
are valid in Markov’s school of constructive analysis [Kuš84] where only com-
putable objects are considered. Thus, it seems that theorems which have been
established in Bishop’s style plus BD-N imply weak computable theorems in
our sense (like the statement that T computable =⇒ T−1 computable). In
this respect, it is interesting to note that Ishihara proved versions of Banach’s
Inverse Mapping Theorem, the Open Mapping Theorem and the Closed Graph
Theorem based on the notion of sequential continuity (which is constructively
weaker than continuity) [Ish94, Ish97]. Since the statement that any sequential
continuous mapping (between separable metric spaces) is continuous, is equiv-
alent to the principle BD-N (cf. Theorem 4 in [Ish92]), it follows that Ishihara’s
results are closely related to our weak computable results. In turn, our nega-
tive weak results (like the statement that there exists a computable sequence
(Ti) of operators such that (T−1

i ) is not a computable sequence) should imply
that the corresponding statements cannot even be derived in the constructive
setting plus BD-N. To establish the precise relation between computable and
constructive analysis remains an interesting open problem for future investi-
gations.

Related Results in Reverse Analysis

In reverse mathematics, as proposed by Friedman and Simpson [Sim99], sev-
eral principles of Banach spaces have been analysed according to which axioms
are needed to prove the corresponding theorems in the language of second
order arithmetic. Especially, it has been shown that the subsystem RCA0

of second order arithmetic (i.e. second order arithmetic with a restricted re-
cursive comprehension axiom) suffices to prove the Baire Category Theorem
[BS93, Sim99, Bro87]. This setting rather corresponds to Markov’s construc-
tive analysis [Kuš84] where only computable objects are considered. Maybe
a kind of higher order reverse mathematics might come closer to the uniform
point of view of computable analysis [Koh]. Moreover, the proofs in reverse
mathematics are not necessarily effective such that they cannot be directly
transfered to computable analysis (an example is the proof of the Banach-
Steinhaus Theorem II.10.8 in [Sim99], where the Baire Category Theorem
is applied in the non-effective contrapositive version). However, computable
counterexamples, provided by computable analysis, could be a relevant source
for reverse mathematics (cf. the discussion in Remark I.8.5 of [Sim99]).
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A Representations of the Operator Space

In this appendix we will discuss several representations of the space B(X, Y )
of linear bounded operators T : X → Y , which have implicitly been considered
in the previous sections. We will only consider ordinary computable normed
spaces X, Y .

Definition A.1 (Representations of the operator space) Let X and
(Y, || ||, e) be computable normed spaces. We define representations of B(X, Y )
as follows:

(1) δev(p) = T : ⇐⇒ [δX → δY ](p) = T ,

(2) δgraph(p) = T : ⇐⇒ δA(X×Y )(p) = graph(T ),

(3) δ<
graph(p) = T : ⇐⇒ δ<

A(X×Y )(p) = graph(T ),

(4) δseq(p) = T : ⇐⇒ δNY (p) = (Tei)i∈N,

for all p ∈ Σω and linear bounded operators T : X → Y .

Besides the mentioned representations we will also consider those vari-
ants that are obtained by adding information on the operator bound ||T || =
sup||x||=1 ||Tx|| of the represented operator T : X → Y , as defined in the Sec-
tion 15. For completeness we repeat the definition: if δ is a representation of
B(X, Y ), then we define representations δ=, δ> of B(X, Y ) by

(1) δ=〈p, q〉 = T : ⇐⇒ δ(p) = T and δR(q) = ||T ||,
(2) δ>〈p, q〉 = T : ⇐⇒ δ(p) = T and δR(q) ≥ ||T ||.

Now we can reformulate several of our theorems as reducibility results on the
representations given above. The next theorems especially includes a uniform
version of Theorem 8.7.

Theorem A.2 (Representations of the operator space) Let X and Y be
computable Banach spaces. Then the following reducibilities for representations
of B(X, Y ) hold:

(1) δ=
ev ≤ δev ≤ δseq ≤ δ<

graph and δev ≤ δgraph ≤ δ<
graph,

(2) δev ≡ δ>ev ≡ δ>seq ≡ δ<>
graph ≡ δ>graph,

(3) δ=
ev ≡ δ=

seq ≡ δ<=
graph ≡ δ=

graph.
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Proof. (1) “δ=
ev ≤ δev” holds obviously and “δev ≤ δseq” follows by the evalu-

ation property.
“δseq ≤ δ<

graph” can be proved similar as “(3)=⇒(4)” of Theorem 8.7. Therefore
let T : X → Y be a linear bounded operator and let (yn)n∈N be the sequence
in Y with yi := Tei for all i ∈ N. Let αe〈k, 〈n0, ..., nk〉〉 :=

∑k
i=0 αF(ni)ei. By

linearity of T it follows

Tαe〈k, 〈n0, ..., nk〉〉 = T

(
k∑

i=0

αF(ni)ei

)
=

k∑
i=0

αF(ni)yi.

Thus, given (yn)n∈N we can compute Tαe since the algebraic operations in Y
are computable. Using type conversion we can effectively find the sequence
f : N → X × Y, i 7→ (αe(i), Tαe(i)) which is dense in graph(T ) by continuity
of T , since αe is dense in X. By Proposition 4.5 the desired result follows.
“δev ≤ δgraph” follows from the Graph Theorem 8.3. “δgraph ≤ δ<

graph” follows
from δA(X×Y ) ≤ δ<

A(X×Y ).

(2) “δev ≤ δ>ev” follows from Theorem 9.10 and “δ>ev ≤ δev” holds obviously.
“δ>ev ≤ δ>seq ≤ δ<>

graph” follows directly from (1).

“δ<>
graph ≤ δ>ev” Given graph(T ) ∈ A<(X × Y ) of some linear bounded operator

T : X → Y , we can effectively find a sequence f : N → X × Y such that
range(f) is dense in graph(T ) by Proposition 4.5. By Proposition 3.11 we can
effectively find the projections f1 : N → X and f2 : N → Y of f too. Given
x ∈ X, a real number s ≥ ||T || and a precision m ∈ N we can effectively find
find some n ∈ N and numbers q0, ..., qn ∈ QF such that ||∑n

i=0 qif1(i) − x|| <
1
s
2−m since range(f1) is dense in X. It follows∣∣∣∣∣

∣∣∣∣∣T
(

n∑
i=0

qif1(i)

)
− T (x)

∣∣∣∣∣
∣∣∣∣∣ ≤ ||T || ·

∣∣∣∣∣
∣∣∣∣∣

n∑
i=0

qif1(i) − x

∣∣∣∣∣
∣∣∣∣∣ < 2−m.

By linearity of T we obtain T (
∑n

i=0 qif1(i)) =
∑n

i=0 qiTf1(i) =
∑n

i=0 qif2(i)
and thus we can evaluate T effectively up to any given precision m. Using
type conversion we obtain the desired reducibility.
“δ>ev ≤ δ>graph” and “δ>graph ≤ δ<>

graph” follow from (1).

(3) This directly follows from (2). 2

It should be mentioned that we have used completeness only for the re-
duction “δ<>

graph ≤ δ>ev” (for the application of Proposition 4.5) and thus for the
results in (2) and (3), while the statement of (1) remains true for computable
normed spaces X, Y . In case of a finite-dimensional Y = Fm we obtain one
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further equivalence as a direct consequence of Theorem 14.6 since all normed
spaces X are everywhere connected.

Corollary A.3 Let X be a computable normed space and m ≥ 1 a natural
number. Then δev ≡ δgraph for the corresponding representations of B(X, Fm ).

Now the question appears which of the reducibilities given in Theorem
A.2(1) are strict reducibilities. At least for certain spaces all of these re-
ducibilities are strict as the following theorem shows. Figure 2 summarizes the
results.

δ=
ev

- δev

δgraph

δseq

δ<
graph

�
��1

P
PPq �

��1

P
PPq

Figure 2: Representations of the operator space B(`p, `p).

Here an arrow means ≤ and 6≥t. The transitive closure of the diagram is
complete, i.e. all missing arrows in the closure indicate 6≤t.

Theorem A.4 Let p ≥ 1 be some computable real number. Then the following
holds for representations of the space B(`p, `p) of linear bounded operators:

(1) δ<
graph 6≤t δgraph 6≤t δseq 6≤t δev 6≤t δ=

ev,

(2) δ<
graph 6≤t δseq 6≤t δgraph 6≤t δev.

In case of the operator space B(`p, F
m) with m ≥ 1 the same statements hold

with the exception of δgraph 6≤t δseq and δgraph 6≤t δev.

Proof. For the first two results we only have to consider the case B(`p, `p).

“δgraph 6≤t δev” follows from Theorem 8.5.

“δgraph 6≤t δseq” Let us assume that δgraph ≤t δseq is realized by a continuous
function F :⊆ Σω → Σω. Let us consider the zero operator T : `p → `p, i.e.
Tx = 0 for all x ∈ `p. Given a sequence q ∈ dom(δgraph) with δgraph(q) = T
the function F produces a sequence t = F (q) such that δseq(t) = T . More-
over, the mapping T 7→ Te0 is obviously (δseq, `p)–continuous and realized
by some continuous function G :⊆ Σω → Σω. We consider H := G ◦ F .
Since H is continuous too and δ`pH(q) = Te0 = 0, there is some finite prefix
w of q such that δ`pH(wΣω) ⊆ B(0, 1). The word w contains only finitely
many positive information Ui = B((xi, yi), ri), i = 0, ..., n on graph(T ), i.e.
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graph(T ) ∩ Ui 6= ∅ and also only finitely many negative information U ′
i =

B((x′
i, y

′
i), r

′
i) ⊆ graph(T )c with i = 0, ..., m. Since U ′

i ⊆ graph(T )c, we obtain
0 6∈ B(y′

i, r
′
i) for all i = 0, ..., m and since any y′

i is of the form y′
i =

∑ki

j=0 aijej,
the value j := max{k0, ..., km} + 1 exists and we obtain aej 6∈ ⋃m

i=0 B(y′
i, r

′
i)

for all a ∈ F. Correspondingly, any xi is of the form xi =
∑li

j=0 bijej, the
value ι := max{l0, ..., ln} + 1 exists and there exists some ε > 0 such that
xi + εeι′ ∈ B(xi, ri) for all i = 0, ..., n and ι′ ≥ ι. Now we define a matrix
operator T ′ : `p → `p which corresponds to the zero matrix except row number
j which is 

1, 0, ..., 0︸ ︷︷ ︸
ι−1–times

,−b00

ε
,−b10

ε
, ...,−bn0

ε
, 0, 0, ...


 .

Especially, T ′e0 = ej and T ′eι+i = −1
ε
bi0ej for i = 0, ..., n and T ′ei = 0 for all

i 6∈ {0, ι, ι + 1, ..., ι + n}. Then by choice of j we obtain U ′
i ⊆ graph(T ′)c for

all i = 0, ..., m and we claim that also Ui ∩ graph(T ′) 6= ∅ for all i = 0, ..., n:
the last statement follows since xi + εeι+i ∈ B(xi, ri) for all i = 0, ..., n and
T ′(xi + εeι+i) = bi0ej − ε1

ε
bi0ej = 0 ∈ B(yi, ri). Altogether, w is also a prefix

of a name q′ of T ′, i.e. δgraph(q
′) = T ′ but T ′e0 = ej 6∈ B(0, 1) in contrast to

the choice of w. Contradiction!

For the remaining results it suffices to consider the case `′p = B(`p, F). This
follows from the fact that I : B(`p, F) → B(`p, `p), f 7→ (x 7→ (f(x), 0, 0, 0, ...))
is an isometric embedding such that I , as well as I−1, are (δ, δ)–computable
for all representations δ ∈ {δ<

graph, δgraph, δseq, δev, δ
=
ev}. Hence the case B(`p, `p)

can be reduced to the case B(`p, F). Analogous considerations yield the results
in the case B(`p, F

m) with m > 1.

“δev 6≤t δ=
ev” Since the mapping || || :⊆ C(`p, F) → R, defined for linear bounded

T : `p → F is not continuous by Theorem 13.5, it follows that δev 6≤t δ=
ev. The

result for the case B(`p, `p) follows independently from Theorem 9.7.

“δseq 6≤t δev” Let us assume that δseq ≤t δev. We use the L :⊆ FN×R→ C(`p, F)
and the functionals λa : `p → F as in Theorem 13.3. Let q be such that 1

p
+1

q
= 1

and let q = ∞ if p = 1. We consider the function λ :⊆ RN→ B(`p, F), a 7→ λa

with dom(λ) := RN∩ `q. Since λaei = ai for all a = (an)n∈N ∈ `q , it follows
that λ is (δNR, δseq)–computable and thus (δNR, δev)–continuous by assumption.
Thus, L−1 ◦ λ :⊆ RN� FN × R is continuous too and hence the projection
S :⊆ RN� R on the second component too. Thus S is a continuous operation
such that there exists some s ∈ S(a) for all a ∈ RN with ||a||q < ∞ and for
all such s the inequality ||a||q < s holds. Such a continuous operation can
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obviously not exist. Contradiction!

“δseq 6≤t δgraph” This follows from δseq 6≤t δev since δgraph ≡ δev in case of B(`p, F)
by Corollary A.3.

“δ<
graph 6≤t δgraph” This follows from δseq 6≤t δgraph and δseq ≤ δ<

graph. The latter
holds by Theorem A.2(1).

“δ<
graph 6≤t δseq” Let us assume that δ<

graph ≤t δseq. We consider the function

λ :⊆ RN→ B(`p, F), a 7→ λa with dom(λ) := RN∩ `1 and

λa : `p → F, (xk)k∈N 7→
∞∑

k=0

akxk

and the function

A :⊆ RN→ F, (ai)i∈N 7→ a02
1
p −

∞∑
j=0

aj+12
− j+1

p ,

with dom(A) := RN∩ `1. Let A′ :⊆ RN → RN be defined by A′(ai)i∈N :=
(A(ai)i∈N, a1, a2, ...). We claim that λ ◦ A′ :⊆ RN → B(`p, F) is (δNR, δ<

graph)–

computable and thus (δNR, δseq)–computable by assumption too. But this im-
plies that A is continuous since A(a) = λA′(a)e0 = λ ◦A′(a)(e0). But obviously
A is not continuous, since the value of the sum does substantially depend on
coefficients aj for large j. Contradiction! It remains to prove the claim. There-

fore, we define a sequence e′ = (e′i)i∈N in `p by e′0j := 2−
j+1

p and e′i+1 := ei+1

for all i, j ∈ N. Then ||e′i||p = 1 for all i ∈ N and e′ : N → `p is a fundamental
sequence, i.e. its linear span is dense in `p. Now let a = (ai)i∈N ∈ `1 be a
sequence and let a′ := A′(a). Then λa′e′i = λaei = ai for all i ≥ 1 and

λa′e′0 =
∞∑

j=0

a′
je

′
0j = A(a)2−

1
p +

∞∑
j=1

aj2
− j+1

p = a0

Now given the sequence a = (ai)i∈N, we can use evaluation and type conversion
and the fact that the algebraic operations in `p are computable to effectively

determine the sequence αe′ : N → `p with αe′〈k, 〈n0, ..., nk〉〉 :=
∑k

i=0 αF(ni)e
′
i.

By linearity of λA′(a) it follows

λA′(a)αe′〈k, 〈n0, ..., nk〉〉 = λA′(a)

(
k∑

i=0

αF(ni)e
′
i

)
=

k∑
i=0

αF(ni)ai.
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Thus, given (ai)i∈N we can use type conversion to effectively find the sequence
f : N → X × Y, i 7→ (αe′(i), λA′(a)αe′(i)) which is dense in graph(λA′(a)) by
continuity of λA′(a) since αe′ is dense in X. But this proves that λ ◦ A′ is
(δNR, δ<

graph)–computable. 2

While this theorem shows that the mentioned representations have to be
distinguished with respect to computability and continuity, we can deduce
from Theorem A.2 (or from Theorem 8.7, alternatively) that the corresponding
classes of computable operators coincide. However, the class of computable
operators with computable norm is strictly smaller in case of X = Y = `p or
X = `p and Y = F by Corollary 9.5, Example 13.2, respectively.

Corollary A.5 Let X, Y be computable Banach spaces. Then the subsets of
δ–computable operators of B(X, Y ) coincide for δ ∈ {δev, δgraph, δseq, δ

<
graph}.

The class of δ=
ev–computable operators is strictly smaller in general.

In case of the space B(`p, F
m) Corollary A.3 leads to a modification of

Figure 2 which is displayed in Figure 3. Thus, especially in case of the dual
space all considered representations can be ordered linearly w.r.t. computable
reducibility.

δgraph δseq δ<
graphδ=

ev
- δev ≡ - -

Figure 3: Representations of the operator space B(`p, F
m).

In case that both spaces X, Y are finite-dimensional, all considered repre-
sentations are equivalent, as the following result shows.

Theorem A.6 Let n, m ≥ 1 be natural numbers. Then

δ=
ev ≡ δev ≡ δgraph ≡ δseq ≡ δ<

graph

holds for the corresponding representations of B(Fn , Fm ).

Proof. By Theorem A.2 and Corollary A.3 we obtain

δ<=
graph ≡ δ=

ev ≤ δev ≡ δgraph ≤ δseq ≤ δ<
graph

and thus it suffices to prove δ<
graph ≤ δ<=

graph. In order to prove this it suffices to
show that the operator norm || || :⊆ C(Fn , Fm ) → R is (δ<

graph, δR)–computable.
Given graph(T ) ∈ A<(Fn×Fm) for some bounded linear operator T : Fn → Fm

we can effectively find some function f : N → Fn × Fm such that range(f) is
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dense in graph(T ) by Proposition 4.5. Especially, we can obtain the projections
f1 : N → Fn and f2 : N→ Fm of f . Using the fact that

{(x1, ..., xn) ∈ (Fn)n : (x1, ..., xn) linearly independent}
is an r.e. open subset of (Fn)n (cf. [ZB00, BZ00, ZB01]) we can effectively find
numbers i1, ..., in ∈ N such that (b1, ..., bn) := (f1(i1), ..., f1(in)) is a basis of
Fn . Now we can effectively determine the function

g : Fn → Fn , (a1, ..., an) 7→
n∑

j=1

ajbj

by type conversion. Since g is linear and bijective we can effectively determine
g−1 by the finite-dimensional Inversion Theorem 14.4 and thus we can com-
pute the representation ei =

∑n
j=1 aijbj of the unit vectors e1, ..., en ∈ Fn by

(ai1, ..., ain) := g−1(ei). By linearity of T we obtain

yi := Tei = T

(
n∑

j=1

aijbj

)
=

n∑
j=1

aijT bj =
n∑

j=1

aijf2(ij)

for i = 1, ..., n and thus A := (y1, ..., yn) ∈ Fm×n is the matrix which represents
T . Now we obtain

||T || = ||A|| := max
i=1,...,m

n∑
j=1

|yij|

where yj =: (y1j, ..., ymj) for j = 1, ..., n (see e.g. Example 23.3.b in [Sch97]
for the equality ||T || = ||A||). Thus, given the graph of T we can actually
compute the norm ||T || which implies the desired result. 2

We close this section with a brief discussion of the inversion operator. On
the one hand, it is well-known that inversion T 7→ T−1 is continuous w.r.t. the
operator norm topology on the subset of bijective bounded linear operators
of B(X, Y ) (cf. Banach’s Inversion Stability Theorem 5.6.12 in [Kut96]). On
the other hand, we have seen in Section 15 that we cannot admissibly rep-
resent B(X, Y ) w.r.t. the operator norm topology in the non-separable case.
Moreover, Corollary 6.5 shows that the inversion operator T 7→ T−1 is not
continuous w.r.t. δev in general. However, Lemma 8.4 shows that the inversion
operator is computable w.r.t δgraph (and analogously, one can prove that it is
computable w.r.t. δ<

graph). In light of Corollary A.5 this is an interesting obser-
vation since it shows that there exist representations of B(X, Y ) which provide
both: the ordinary class of computable operators and a computable inversion
operator.



78 The Baire Category Theorem

Corollary A.7 (Inversion) Let X, Y be computable Banach spaces and con-
sider the inversion mapping

ι :⊆ B(X, Y ) → B(Y, X), T 7→ T−1

with dom(ι) := {T ∈ B(X, Y ) : T bijective}. Then

(1) ι is (δgraph, δgraph)– and (δ<
graph, δ

<
graph)–computable,

(2) ι is neither (δev, δev)– nor (δ=
ev, δ

=
ev)–continuous in general.

B The Baire Category Theorem

Baire’s Category Theorem states that a complete metric space X cannot be
decomposed into a countable union of nowhere dense closed subsets An (cf.
[GP65]). Classically, we can bring this statement into the following two equiv-
alent logical forms:

(1) For all sequences (An)n∈N of closed and nowhere dense subsets An ⊆ X,
there exists some point x ∈ X \⋃∞

n=0 An,

(2) for all sequences (An)n∈N of closed subsets An ⊆ X with X =
⋃∞

n=0 An,
there exists some k ∈ N such that Ak is somewhere dense.

Both logical forms of the classical theorem have interesting applications.
While the first version is often used to ensure the existence of certain types
of counterexamples, the second version is for instance used to prove the Open
Mapping Theorem and the Closed Graph Theorem [GP65]. However, from the
computational point of view the content of both logical forms of the theorem
is different. This has already been observed in constructive analysis, where a
discussion of the theorem can be found in [BR87]. We will study the theorem
from the point of view of computable analysis. In this spirit one version of the
Baire Category Theorem has already been proved by Yasugi, Mori and Tsujii
[YMT99].

Depending on how the sequence (An)n∈N is represented, i.e. how it is
“given”, we can compute an appropriate point x in case of the first version
or compute a suitable index k in case of the second version. Roughly speak-
ing, the second logical version requires stronger information on the sequence of
sets than the first version. Unfortunately, this makes the second version of the
theorem less applicable than its classical counterpart, since this strong type of
information on the sequence (An)n∈N is rarely available.
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B.1 First Computable Baire Category Theorem

For this section let (X, d, α) be some fixed complete computable metric space,
let C(X) := C(X,R) and let A := A(X) be the set of closed subsets of X.
We write A> to indicate that we use the represented space (A, δ>

A). In the
following we will use the fact that the union operation is computable on A>.

Proposition B.1 The operation A> × A> → A>, (A, B) 7→ A ∪ B is com-
putable.

Proof. Using evaluation and type conversion w.r.t. [δX → δR], it is straight-
forward to show that C(X) × C(X) → C(X), (f, g) 7→ f · g is computable, but
if f−1{0} = A and g−1{0} = B, then (f · g)−1{0} = A ∪ B. Thus the desired
result follows from the previous Proposition 4.4. 2

Since computable functions have the property that they map computable
points to computable points, we can deduce that the class of co-r.e. closed sets
is closed under intersection.

Corollary B.2 If A, B ⊆ X are co-r.e. closed, then A ∪ B is co-r.e. closed
too.

Moreover, it is obvious that we can compute complements of open balls in
the following sense.

Proposition B.3 (X \ B(α(n), k))〈n,k〉∈N is a computable sequence in A>.

Using these both observations, we can prove the following first version of the
computable Baire Category Theorem just by transferring the classical proof.

Theorem B.4 (First computable Baire Category Theorem) There ex-
ists a computable operation ∆ :⊆ AN

> � XN with the following property: for
any sequence (An)n∈N of closed nowhere dense subsets of X, there exists some
sequence (xn)n∈N ∈ ∆(An)n∈N and all such sequences (xn)n∈N are dense in
X \⋃∞

n=0 An.

Proof. Let us fix some n = 〈n1, n2〉 ∈ N. We construct sequences (xn,k)k∈N in
X and (rn,k)k∈N in Q as follows: let x〈n1,n2〉,0 := α(n1), r〈n1,n2〉,0 := 2−n2 . Given
rn,i and xn,i we can effectively find some point xn,i+1 ∈ range(α) ⊆ X and a
rational εn,i+1 with 0 < εn,i+1 ≤ rn,i such that

B(xn,i+1, εn,i+1) ⊆ (X \ Ai) ∩ B(xn,i, rn,i) = (Ai ∪ X \ B(xn,i, rn,i))
c.
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One the one hand, such a point and radius have to exist since Ai is nowhere
dense and on the other hand, we can effectively find them, given a δ>N

A –name
of the sequence (An)n∈N and using Propositions B.1 and B.3. Now let rn,i+1 :=
εn,i+1/2. Altogether, we obtain a sequence of closed balls

B(xn,i+1, rn,i+1) ⊆ B(xn,i, rn,i) ⊆ ... ⊆ B(xn,0, rn,0)

with rn,i ≤ 2−i and thus xn := limi→∞ xn,i exists since X is complete and the
sequence (xn,i)i∈N is even rapidly converging. Finally, the sequence (xn)n∈N
is dense in X \ ⋃∞

n=0 An, since for any pair (n1, n2) we obtain by definition
x〈n1,n2〉 ∈ B(α(n1), 2

−n2). Altogether, the construction shows how a Turing
machine can transform each δ>N

A –name of a sequence (An)n∈N into a δX–name
of a suitable sequence (xn)n∈N. 2

As a direct corollary of this uniformly computable version of the Baire
Category Theorem we can conclude the following weak version.

Corollary B.5 For any computable sequence (An)n∈N of co-r.e. closed nowhere
dense subsets An ⊆ X, there exists some computable sequence (xn)n∈N which
is dense in X \⋃∞

n=0 An.

Since any computable sequence (An)n∈N of co-r.e. closed nowhere dense
subsets An ⊆ X is “sequentially effectively nowhere dense” in the sense of
Yasugi, Mori and Tsujii, we can conclude the previous corollary also from
their effective Baire Category Theorem [YMT99].

It is a well-known fact that the set of computable real numbers Rc cannot
be enumerated by a computable sequence [Wei00]. We obtain a new proof for
this fact and a generalization for computable complete metric spaces without
isolated points. First we prove the following simple proposition.

Proposition B.6 The operation X → A>, x 7→ {x} is computable.

Proof. This follows directly from the fact that d : X ×X → R is computable
and {x} = X \⋃{B(α(n), k) : d(α(n), x) > k and n, k ∈ N}. 2

If X is a metric space without isolated points, then all singleton sets {x} are
nowhere dense closed subsets. This allows to combine the previous proposition
with the computable Baire Category Theorem B.5.

Corollary B.7 If X is a computable complete metric space without isolated
points, then for any computable sequence (yn)n∈N in X, there exists a com-
putable sequence (xn)n∈N in X such that (xn)n∈N is dense in X \ {yn : n ∈ N}.
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Using Theorem B.4 it is straightforward to derive even a uniform version of
this theorem which states that we can effectively find a corresponding sequence
(xn)n∈N for any given sequence (yn)n∈N. Instead of formulating this uniform
version, we include the following corollary which generalizes the statement that
Rc cannot be enumerated by a computable sequence.

Corollary B.8 If X is a computable complete metric space without isolated
points, then there exists no computable sequence (yn)n∈N such that {yn : n ∈ N}
is the set of computable points of X.

B.2 Computable but Nowhere Differentiable Functions

In this section we want to effectivize the standard example of an application of
the Baire Category Theorem. We will show that there exists a computable but
nowhere differentiable function f : [0, 1] → R. It is not to difficult to construct
an example of such a function directly and actually, some typical examples of
continuous nowhere differentiable functions, like van der Waerden’s function
f : [0, 1] → R or Riemann’s function g : [0, 1] → R (cf. [Kut96]), defined by

f(x) :=
∞∑

n=0

〈4nx〉
4n

and g(x) :=
∞∑

n=0

sin(n2πx)

n2
,

where 〈x〉 := min{x− [x], 1+ [x]− x} denotes the distance of x to the nearest
integer, can easily be seen to be computable. The purpose of this section
is rather to demonstrate that the computable version of the Baire Category
Theorem can be applied in similar situations as the classical one.

In this section we will use the computable Banach space of continuous
functions (C[0, 1], || ||, e) with C[0, 1] := C([0, 1],R), as defined in Proposition
3.8(4). By δC we denote the Cauchy representation of this space and in the
following we tacitly assume that C[0, 1] is endowed with this representation.
For technical simplicity we assume that functions f : [0, 1] → R are actually
functions f : R → R extended constantly, i.e. f(x) = f(0) for x ≤ 0 and
f(x) = f(1) for x ≥ 1. It is well-known that a function f : [0, 1] → R is
δC–computable, if it is computable considered as a function f : R→ R and we
can actually replace δC by the restriction of [δR→ δR] to C[0, 1] whenever it is
helpful [Wei00].

We will consider differentiability for functions f : [0, 1] → R only within
[0, 1]. If a function f : [0, 1] → R is differentiable at some point t ∈ [0, 1], then

the quotient | f(t+h)−f(t)
h

| is bounded for all h 6= 0. Thus f belongs to the set

Dn :=

{
f ∈ C[0, 1] : (∃t ∈ [0, 1])(∀h ∈ R \ {0})

∣∣∣∣f(t + h) − f(t)

h

∣∣∣∣ ≤ n

}
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for some n ∈ N. Because of continuity of the functions f , it suffices if the
universal quantification over h ranges over some dense subset of R \ {0} such
as Q + π in order to obtain the same set Dn.

It is well-known, that all sets Dn are closed and nowhere dense [GP65].
Thus, by the classical Baire Category Theorem, the set C[0, 1]\⋃∞

n=0 Dn is non-
empty and there exists some continuous but nowhere differentiable function
f : [0, 1] → R. Our aim is to prove that (Dn)n∈N is a computable sequence of
co-r.e. closed nowhere dense subsets of C[0, 1], i.e. a computable sequence in
A>(C[0, 1]). Then we can apply the computable Baire Category Theorem B.4
to ensure the existence of a computable but nowhere differentiable function
f : [0, 1] → R.

The crucial point is to get rid of the existential quantification of t over
[0, 1] since arbitrary unions of co-r.e. closed sets need not to be (co-r.e.) closed
again. The main tool will be the following Proposition which roughly speaking
states that co-r.e. closed subsets are closed under parametrized countable and
computable intersection and compact computable union.

Proposition B.9 Let (X, δ) be some represented space and let (Y, d, α) be
some computable metric space.

(1) If the function A : X × N → A>(Y ) is computable, then the countable

intersection ∩A : X → A>(Y ), x 7→
∞⋂

n=0

A(x, n) is computable too.

(2) If the function U : X × R → A>(Y ) is computable, then the compact
union ∪U : X → A>(Y ), x 7→ ⋃

t∈[0,1]

U(x, t) is computable too.

Proof. (1) Let A : X × N → A>(Y ) be computable. If for some fixed x ∈ X
we have A(x, n) = Y \ ⋃∞

k=0 B(α(ink), jnk) with ink, jnk ∈ N for all n, k ∈ N,
then

∞⋂
n=0

A(x, n) =
∞⋂

n=0

(
Y \

∞⋃
k=0

B(α(ink), jnk)

)
= Y \


 ∞⋃

〈n,k〉=0

B(α(ink), jnk)


 .

Thus, it is straightforward to show that ∩A : X → A>(Y ) is computable too.

(2) Now let U : X ×R→ A>(Y ) be computable. Let δ[0,1] :⊆ Σω → [0, 1] be
the signed digit representation of the unit interval, where Σ = {0, 1,−1} and
δ[0,1] is defined in all possible cases by

δ[0,1](p) :=
∞∑
i=0

p(i)2−i.
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It is known that dom(δ[0,1]) is compact and δ[0,1] is computably equivalent
to the Cauchy representation δR, restricted to [0, 1] (cf. [Wei00]). Thus, U
restricted to X × [0, 1] is ([δ, δ[0,1]], δ

>
A)–computable. Then there exists some

Turing machine M which computes a function F :⊆ Σω → Σω which is a
([δ, δ[0,1]], δ

>
A)–realization of U : X × R→ A>(Y ). Thus, for each given input

sequence 〈p, q〉 ∈ Σω with x := δ(p) and t := δ[0,1](q) the machine M produces
some output sequence 01〈nq0 ,kq0〉01〈nq1,kq1〉01〈nq2,kq2〉... such that

U(x, t) = Y \
∞⋃
i=0

B(α(nqi), kqi).

Since we will only consider a fixed p, we do not mention the corresponding
dependence in the indices of the values nqi, kqi. It is easy to prove that the set
W := {w ∈ Σ∗ : (∃q ∈ dom(δ[0,1])) w is a prefix of q} is recursive.

We will sketch the construction of a machine M ′ which computes the oper-
ation ∪U : X → A>(Y ). On input p the machine M ′ works in parallel phases
〈i, j, k〉 = 0, 1, 2, ... and produces an output r. In phase 〈i, j, k〉 it simulates
M on input 〈p, w0ω〉 for all words w ∈ Σk ∩ W and exactly k steps. Let
01〈nw0,kw0〉01〈nw1 ,kw1〉...01〈nwlw ,kwlw 〉0 be the corresponding output of M (more
precisely: the longest prefix of the output which ends with 0). Then the ma-
chine M ′ checks whether for all w ∈ Σk ∩ W there is some ιw = 0, ..., lw such
that d(α(i), α(nwιw )) + j < kwιw holds, which especially implies

B(α(i), j) ⊆
⋂

w∈Σk∩W

B(α(nwιw ), kwιw ) ⊆
⋂

t∈[0,1]

Y \ U(x, t) = Y \⋃U(x).

The verification is possible since (X, d, α) is a computable metric space. As
soon as corresponding values ιw are found for all w ∈ Σk ∩W , phase 〈i, j, k〉 is
finished with extending the output by 01〈i,j〉. Otherwise it might happen that
the phase never stops, but other phases may run in parallel.

We claim that this machine M ′ actually computes ∪U . On the one hand,
it is clear that B(α(i), j) ⊆ Y \ ∪U(x) whenever 01〈i,j〉 is written on the
output tape by M ′. Thus, if M ′ actually produces an infinite output r, then
we obtain immediately δ>

A(r) ⊆ ∪U(δ(p)). On the other hand, let y ∈ Y \
∪U(δ(p)). Then for any q ∈ dom(δ[0,1]) the machine M produces some output
sequence 01〈nq0,kq0〉01〈nq1 ,kq1〉01〈nq2,kq2〉... and there has to be some lq such that
y ∈ B(α(nqlq), kqlq) and a finite number k of steps such that M produces

01〈nqlq ,kqlq 〉0 on the output tape. Since dom(δ[0,1]) is compact, there is even a
common such k for all q ∈ dom(δ[0,1]). Let w′ := w0ω for all w ∈ Σ∗. Then
there exist i, j ∈ N such that

y ∈ B(α(i), j) ⊆
⋂

w∈Σk∩W

B(α(nw′lw′ ), kw′lw′)
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and d(α(i), α(nw′lw′)) + j < kw′lw′ . Thus M ′ will produce 01〈i,j〉 on the output
tape in phase 〈i, j, k〉. Altogether, this proves δ>

A(r) = ∪U(δ(p)) and thus
∪U : X → A>(Y ) is computable. 2 2

Now using this proposition, we can directly prove the desired result.

Theorem B.10 There exists a computable sequence (fn)n∈N of computable but
nowhere differentiable functions fn : [0, 1] → R such that {fn : n ∈ N} is dense
in C[0, 1].

Proof. If we can prove that (Dn)n∈N is a computable sequence of co-r.e.
nowhere dense closed sets, then Corollary B.5 implies the existence of a com-
putable sequence of computable functions fn in C[0, 1] \ ⋃∞

n=0 Dn. Since all
somewhere differentiable functions are included in some Dn, it follows that all
fn are nowhere differentiable. Since it is well-known that all Dn are nowhere
dense, it suffices to prove the computability property. We recall that it suffice
to consider values h ∈ Q + π in the definition of Dn because of continuity of
the functions f . We define a function F : N ×R× N × C[0, 1] → R by

F (n, t, k, f) := max

{∣∣∣∣f(t + k + π)− f(t)

k + π

∣∣∣∣− n, 0

}
.

Then using the evaluation property of [δR → δR], one can prove that F is
computable. Using type conversion w.r.t. [δC → δR] one obtains computabil-
ity of F̂ : N × R× N → C(C[0, 1]), defined by F̂ (n, t, k)(f) := F (n, t, k, f).
Using Proposition 4.4 we can conclude that the mapping A : N × R× N →
A>(C[0, 1]) with A(n, t, k) := (F̂ (n, t, k))−1{0} is computable. Thus by the
previous proposition ∩A : N × R → A>(C[0, 1]) is also computable and thus
∪ ∩ A : N → A>(C[0, 1]) too. Now we obtain

∪ ∩ A(n) =
⋃

t∈[0,1]

∞⋂
k=0

{
f ∈ C[0, 1] :

∣∣∣∣f(t + k + π)− f(t)

k + π

∣∣∣∣ ≤ n

}
= Dn.

Thus, (Dn)n∈N is a computable sequence of co-r.e. closed subsets of C[0, 1]. 2

B.3 Second Computable Baire Category Theorem

While the first version of the computable Baire Category Theorem has been
proved by a direct adaptation of the classical proof, the second version will
even be a consequence of the classical version. Whenever a classical theorem
for complete computable metric spaces X, Y has the form

(∀x)(∃y)R(x, y)
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with a predicate R ⊆ X × Y which can be proven to be r.e. open, then
the theorem admits a computable multi-valued realization F : X � Y such
that R(x, y) holds for all y ∈ F (x) (cf. the Uniformization Theorem 3.2.40 in
[Bra99b]). Actually, a computable version of the second formulation of the
Baire Category Theorem, given in the Introduction, can be derived as such a
direct corollary of the classical version.

Given a co-r.e. set A ⊆ X, the closure of its complement Ac needs not
to be co-r.e. again (cf. Proposition 5.4 in [Bra99a]). Thus, the “complement
closure” operation A> → A>, A 7→ Ac cannot be computable (and actually it
is not even continuous in the corresponding way). In order to overcome this
deficiency, we can simply include the information on Ac into a representing
sequence of A. This is a usual trick in topology and computable analysis to
make functions continuous or computable, respectively. So, if δ is an arbitrary
representation of A, then the representation δ+ of A, defined by

δ+〈p, q〉 := A : ⇐⇒ δ(p) = A and δ>
A(q) = Ac,

has automatically the property that A → A, A 7→ Ac becomes (δ+, δ>
A)–

computable. Here 〈 〉 : Σω × Σω → Σω denotes some appropriate computable
pairing function [Wei00]. We can especially apply this procedure to δ := δ>

A.
The corresponding δ>+

A –computable sets A ⊆ X are called bi-co-r.e. closed
sets. In this case we write A>+ to denote the represented space (A, δ>+

A ). Now
we can directly conclude that the property “somewhere dense” is r.e.

Proposition B.11 The set {A ∈ A : A is somewhere dense} is r.e. in A>+.

The proof follows directly from the fact that a closed set A ⊆ X is some-
where dense, if and only if there exist n, k ∈ N such that B(α(n), k) ⊆ A◦ =
Ac c

. We can now directly conclude the second computable version of the
Baire Category Theorem as a consequence of the classical version (and thus
especially as a consequence of the first computable Baire Category Theorem
B.4).

Theorem B.12 (Second computable Baire Category Theorem) There
exists a computable operation Σ :⊆ AN

>+ � N with the following property: for
any sequence (An)n∈N of closed subsets of X with X =

⋃∞
n=0 An, there exists

some 〈i, j, k〉 ∈ Σ(An)n∈N and for all such 〈i, j, k〉 we obtain B(α(i), j) ⊆ Ak.

Of course, if we replace A>+ by (A, δ+) with any other underlying repre-
sentation δ instead of δ>

A, then the theorem would also hold true. We mention
that the corresponding constructive version of the theorem (Theorem 2.5 in
[BR87]), if directly translated into a computable version, leads to a weaker
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statement than Theorem B.12: if the sequence (An)n∈N would be effectively
given by the sequences of distance functions of A and Ac, this would constitute
a stronger input information than it is the case if it is given by δ>+

A . Now we
can formulate a weak version of the second Baire Category Theorem.

Corollary B.13 For any computable sequence (An)n∈N of bi-co-r.e. closed
subsets An ⊆ X with X =

⋃∞
j=0 A〈i,j〉 for all i ∈ N, there exists a total com-

putable function f : N→ N such that A〈i,f(i)〉 is somewhere dense for all i ∈ N.

By applying some techniques from recursion theory [Wei87, Odi89], we can
prove that the previous theorem and its corollary do not hold true with A> or
A instead of A>+. For this result we use as metric space the Euclidean space
X = R.

Theorem B.14 There exists a computable sequence (An)n∈N of recursive closed
subsets An ⊆ [0, 1] with [0, 1] =

⋃∞
j=0 A〈i,j〉 for all i ∈ N such that for every

computable f : N → N there is some i ∈ N such that A〈i,f(i)〉 is nowhere dense.

Proof. We use some total Gödel numbering ϕ : N → P of the set of partial
recursive functions P := {f :⊆ N → N : f computable} to define sets

A′
〈i,j〉 :=

min ϕ−1
i {j}⋃

k=0

{m

2k
: m = 0, ..., 2k

}
.

For this definition we assume min∅ = ∞. Whenever i ∈ N is the index of some
total recursive function ϕi : N → N such that range(ϕi) 6= N, then we obtain⋃∞

j=0 A′
〈i,j〉 = [0, 1] and A′

〈i,j〉 is somewhere dense, if and only if j 6∈ range(ϕi).
Using the smn-Theorem one can inductively prove that there is a total recursive
function r : N → N such that ϕr〈i,j〉 is total if ϕi is and

range(ϕr〈i,〈k,〈n0,...,nk〉〉〉) = range(ϕi) ∪ {n0, ..., nk}.
Let i0 be the index of some total recursive function which enumerates some
simple set S := range(ϕi0) and define A〈i,j〉 := A′

〈r〈i0,i〉,j〉. Then (An)n∈N is a

computable sequence of recursive closed subsets An ⊆ [0, 1]. Let us assume
that there exists a total recursive function f : N → N with the property that
A〈i,f(i)〉 is somewhere dense for all i ∈ N. Let j0 ∈ N \ S and define a function
g : N → N inductively by g(0) := j0 and g(n+1) := f(r〈i0, 〈n, 〈g(0), ...g(n)〉〉〉).
By induction we prove g(n) ∈ N \ (S ∪ {g(0), ..., g(n− 1)}) for all n ∈ N. The
case n = 0 is obvious since g(0) = j0 ∈ N \ S. Now, let us assume that
g(0), ..., g(n) ∈ N \ S has been proved and let i := r〈i0, 〈n, 〈g(0), ..., g(n)〉〉〉.
By assumption A〈i,f(i)〉 is somewhere dense, hence

g(n+1) = f(i) 6∈ range(ϕi) = range(ϕi0)∪{g(0), ..., g(n)} = S∪{g(0), ..., g(n)}.
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Thus, g is computable and range(g) is some infinite r.e. subset of the immune
set N \ S. Contradiction! 2

Even a simpler variant of the same idea can be used to prove that in a well-
defined sense there exists no continuous multi-valued operation Σ :⊆ AN

> � N

which meets the conditions of Theorem B.12.
Unfortunately, the simplicity of the proof of the second computable Baire

Category Theorem B.12 corresponds to its uselessness. The type of information
that one could hope to gain from an application of the theorem has already
to be fed in by the input information. However, Theorem B.14 shows that a
substantial improvement of Theorem B.12 seems to be impossible.
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