
Computability of Linear Equations

Vasco Brattka∗

Theoretische Informatik I, Informatikzentrum

FernUniversität, 58084 Hagen, Germany

vasco.brattka@fernuni-hagen.de

Martin Ziegler∗∗

Heinz Nixdorf Institute, Fachbereich 17

University of Paderborn, 33095 Paderborn, Germany

ziegler@uni-paderborn.de

Abstract

Do the solutions of linear equations depend computably on their co-
efficients? Implicitly, this has been one of the central questions in linear
algebra since the very beginning of the subject and the famous Gauß
algorithm is one of its numerical answers. Today there exists a tremen-
dous number of algorithms which solve this problem for different types
of linear equations. However, actual implementations in floating point
arithmetic keep exhibiting numerical instabilities for ill-conditioned in-
puts. This situation raises the question which of these instabilities are
intrinsic, thus caused by the very nature of the problem, and which
are just side effects of specific algorithms. To approach this principle
question we revisit linear equations from the rigorous point of view of
computability. Therefore we apply methods of computable analysis,
which is the Turing machine based theory of computable real number
functions. It turns out that, given the coefficients of a system of linear
equations, we can compute the space of solutions, if and only if the
dimension of the solution space is known in advance. Especially, this
explains why there cannot exist any stable algorithms under weaker
assumptions.

Keywords: computable analysis, linear equations.

∗Work partially supported by DFG Grant BR 1807/4-1
∗∗Work partially supported by DFG Grant Me 872/7-3

2 Introduction

1 Introduction

In this paper we want to study computability properties of linear equations

Ax = b,

where A ∈ Rm×n is a real matrix, b ∈ Rm is a real vector and x ∈ Rn is
a variable. Especially, we are interested in the question how the space of
solutions

L := {x ∈ Rn : Ax = b}
does computably depend on the matrix A and the vector b.

Numerical analysis provides a large number of algorithms to solve linear
equations, such as Gauß’ elimination algorithm, Cholesky’s decomposition al-
gorithm and many others. Unfortunately, the applicability of these algorithms
is limited by their numerical instability and error analysis is a non-trivial topic
of research (cf. [11] as a standard text on this topic). It is not that well-known
that Alan Turing was not only a pioneer in computability theory but also in the
theory of numerical stability (in [9] Turing invented the measure of stability
which nowadays is known as condition number).

While Turing’s studies in numerical stability theory were guided by ap-
plications, the invention of his famous machine model was mainly motivated
by principle considerations about computability [8]; and actually, as one of
his main motivations he mentioned real number computability! Turing ma-
chines can be used to compute real number functions f : R → R in a very
straightforward way: f is called computable, if there exists a machine M which
transforms each rapidly converging Cauchy sequence of rationals which repre-
sents a real number x into a sequence which represents f(x). It should come as
no surprise that this definition implies that computable real number functions
are necessarily continuous. Based on the sketched idea, a theory, called com-
putable analysis, has been developed by Grzegorczyk [2], Lacombe [5], Banach
and Mazur [6], Pour-El and Richards [7], Kreitz and Weihrauch [4], Ko [3] and
many others.

We apply computable analysis for a systematic study of computability
properties of linear equations. Our main result shows that, given the coef-
ficients of a system of linear equations, we can compute the space of solutions,
if and only if the dimension of the solution space is known in advance (cf. the
following table for solvable linear equations with rank(A, b) = rank(A)).

input output dependence

A, b L discontinuous
A, b, rank(A) L computable

Computable Analysis and Linear Algebra 3

Since by virtue of Church’s thesis (in one of its usual interpretations), the
Turing machine model allows to characterize those functions which are realiz-
able on physical machines, our results enable us to characterize the intrinsical
limitations of algorithmic solutions of linear equations. And actually, our re-
sults are in best conformity with the practical knowledge in numerical analysis.
But since numerical analysis does not use any formal model of computation,
it was not before such a theoretical study that this heuristical knowledge on
principal limitations could be expressed in form of concise theorems.

In a previous paper [12] we have started to link linear algebra to computable
analysis and we have investigated the question in which sense the dimension
of a linear subspace can be computed. The present article continues along
this line. The following section contains a short introduction to computable
analysis and our previous results. Section 3 contains the technical main part of
the paper and discusses how certain types of information on linear subspaces
can be computably translated into each other. Finally, Section 4 applies the
results to linear equations in order to study their computability properties.

2 Computable Analysis and Linear Algebra

In this section we briefly present some basic notions from computable analysis
and some direct consequences of well-known facts. We will use Weihrauch’s
representation based approach to computable analysis, the so-called Type-2-
Theory of Effectivity, since it allows to express computations with real num-
bers, continuous functions and subsets in a highly uniform way. For a precise
and comprehensive reference we refer the reader to [10]. Roughly speaking, a
partial real number function f :⊆ Rn → R is computable, if there exists a Tur-
ing machine which transfers each sequence p ∈ Σω that represents some input
x ∈ Rn into some sequence FM(p) which represents the output f(x). Since the
set of real numbers has continuum cardinality, real numbers can only be rep-
resented by infinite sequences p ∈ Σω (over some finite alphabet Σ) and thus,
such a Turing machine M has to compute infinitely long. But in the long run
it transfers each input sequence p into an appropriate output sequence FM(p).
It is reasonable to allow only one-way output tapes for infinite computations
since otherwise the output after finite time would be useless (because it could
possibly be replaced later by the machine). It is straightforward how this no-
tion of computability can be generalized to other sets X with a corresponding
representation, that is a surjective partial mapping δ :⊆ Σω → X.

Definition 1 (Computable functions) Let δ, δ′ be representations ofX, Y ,
respectively. A function f :⊆ X → Y is called (δ, δ′)–computable, if there exists
some Turing machine M such that δ′FM(p) = fδ(p) for all p ∈ dom(fδ).

4 Computable Analysis and Linear Algebra

Here, FM :⊆ Σω → Σω denotes the partial function, computed by the
Turing machine M . Figure 1 illustrates the situation.

Σω -

X -

FM

f

?

δ′δ

Σω

Y

?

Figure 1: Computability w.r.t. representations

It is straightforward how to generalize this definition to functions with
several inputs and it can even be generalized to multi-valued operations f :⊆
X � Y , where f(x) is a subset of Y instead of a single value. In this case we
replace the condition in the definition above by δ′FM(p) ∈ fδ(p). We can also
define the notion of (δ, δ′)–continuity by replacing FM by a continuous function
F :⊆ Σω → Σω (w.r.t. the Cantor topology on Σω).

Already in case of the real numbers it appears that the defined notion of
computability sensitively relies on the chosen representation of the real num-
bers. The theory of admissible representations completely answers the question
how to find “reasonable” representations of topological spaces [10]. Let us just
mention that for admissible representations δ, δ′ each (δ, δ′)–computable func-
tion is necessarily continuous (w.r.t. the final topologies of δ, δ′).

An example of an admissible representation of the real numbers is the so-
called Cauchy representation ρ :⊆ Σω → R, where roughly speaking, ρ(p) = x
if p is an (appropriately encoded) sequence of rational numbers (qi)i∈N which
converges rapidly to x, i.e. |qi − qk| ≤ 2−k for all i > k. By standard coding
techniques this representation can easily be generalized to a representation of
the n-dimensional Euclidean space ρn :⊆ Σω → Rn and to a representation of
m× n matrices ρm×n :⊆ Σω → Rm×n. A vector x ∈ Rn or a matrix A ∈ Rm×n

will be called computable, if it has a computable ρn–, ρm×n–name, i.e. if there
exists a computable p ∈ Σω such that x = ρn(p) or A = ρm×n(p), respectively.
A function f :⊆ Rn → R is called just computable, if it is (ρn, ρ)–computable.

If δ, δ′ are admissible representations of topological spaces X, Y , respec-
tively, then there exists a canonical representation [δ, δ′] :⊆ Σω → X × Y of

Computable Analysis and Linear Algebra 5

the product X × Y and a canonical representation [δ → δ′] :⊆ Σω → C(X, Y)
of the space C(X, Y) of the total continuous functions f : X → Y . We
just mention that these representations allow evaluation and type conversion
(which correspond to an utm- and smn-Theorem). Evaluation means that the
evaluation function C(X, Y) × X → Y, (f, x) 7→ f(x) is ([[δ → δ′], δ], δ′)–
computable and type conversion means that a function f : Z × X → Y
is ([δ′′, δ], δ′)–computable, if and only if the canonically associated function
f ′ : Z → C(X, Y) with f ′(z)(x) := f(z, x) is (δ′′, [δ → δ′])–computable. As
a direct consequence we obtain that matrices A ∈ Rm×n can effectively be
identified with linear mappings f ∈ Lin(Rn,Rm), see Proposition 2.1 and 2.2
below. Especially, a matrix A is computable, if and only if the corresponding
linear mapping is a computable function.

To express weaker computability properties, we will use two further rep-
resentations ρ<, ρ> :⊆ Σω → R. Roughly speaking, ρ<(p) = x if p is an
(appropriately encoded) list of all rational numbers q < x. (Analogously, ρ>

is defined with q > x.) It is known that a mapping f :⊆ X → R is (δ, ρ)–
computable, if and only if it is (δ, ρ<)– and (δ, ρ>)–computable [10]. The
(ρn, ρ<)–, (ρn, ρ>)–computable functions f : Rn → R are called lower, upper
semi-computable, respectively.

Occasionally, we will also use some standard representation νN, νQ of the
natural numbers N = {0, 1, 2, ...} and the rational numbers Q, respectively.

Moreover, we will also need a representation for the space Ln of linear
subspaces V ⊆ Rn. Since all linear subspaces are non-empty closed spaces,
we can use well-known representations of the hyperspace An of all closed non-
empty subsets A ⊆ Rn (cf. [1, 10]). One way to represent such spaces is via
the distance function dA : Rn → R, defined by dA(x) := infa∈A d(x, a), where
d : Rn × Rn → R denotes the Euclidean metric of Rn. Altogether, we define
three representations ψn, ψn

<, ψ
n
> :⊆ Σω → An. We let ψn(p) = A, if and only

if [ρn → ρ](p) = dA. In other words, p encodes a set A w.r.t. ψn, if it encodes
the distance function dA w.r.t. [ρn → ρ]. Analogously, let ψn

<(p) = A, if and
only if [ρn → ρ>](p) = dA and let ψn

>(p) = A, if and only if [ρn → ρ<](p) = dA.
One can prove that ψn

< encodes “positive” information about the set A (all
open rational balls B(q, r) := {x ∈ Rn : d(x, q) < r} which intersect A can
be enumerated), and ψn

> encodes “negative” information about A (all closed
rational balls B(q, r) which do not intersect A can be enumerated). The final
topology induced by ψn on An is the Fell topology. It is a known fact that a
mapping f :⊆ X → An is (δ, ψn)–computable, if and only if it is (δ, ψn

<)– and
(δ, ψn

>)–computable [10]. We mention that

1. the operation (f, A) 7→ f−1(A) ⊆ Rn is
(
[ρn → ρm], ψm

> , ψ
n
>

)
–computable,

2. the operation (f, B) 7→ f(B) ⊆ Rm is
(
[ρn → ρm], ψn

<, ψ
m
<

)
–computable.

6 Computable Analysis and Linear Algebra

From this properties one can deduce some computability properties of kernel
and image, see Proposition 2.3 and 2.4 below.

A closed set A ⊆ Rn is called r.e., co-r.e. or recursive, if it is empty or if
there is a computable p ∈ Σω such that A = ψn

<(p), A = ψn
>(p), A = ψn(p),

respectively. Thus, the non-empty r.e., co-r.e. or recursive subsets A ⊆ Rn

are exactly those with upper, lower semi-computable or computable distance
function dA : Rn → R, respectively and a closed set is recursive, if and only if
it is r.e. and co-r.e. By duality, an open subset U ⊆ Rn is called r.e., co-r.e. or
recursive, if and only if its complementRn\U is co-r.e., r.e. or recursive. Given
a representation δ of X, we will say more generally that a subset U ⊆ Y ⊆ X
is δ–r.e. open in Y , if δ−1(U) is r.e. open in δ−1(Y). Here a set A ⊆ B ⊆ Σω is
called r.e. open in B, if there exists some computable function f :⊆ Σω → Σ∗

with dom(f) ∩ B = A. Intuitively, a set U is δ–r.e. open in Y , if and only if
there exists a Turing machine which halts for an input x ∈ Y given w.r.t. δ, if
and only if x ∈ U . It is known that a set U ⊆ Rn is ρn–r.e. open in Rn, if and
only if it is r.e. open. If a set U ⊆ X is δ–r.e. open in X, then we will say for
short that it is δ–r.e. open.

We close this section with a short survey on computability results in linear
algebra which have been established in our previous paper [12]:

Proposition 2 Consider the following canonical mappings from linear alge-
bra:

1. Lin(Rn,Rm) → Rm×n is
(
[ρn → ρm], ρm×n

)
–computable,

2. Rm×n → Lin(Rn,Rm) is
(
ρm×n, [ρn → ρm]

)
–computable,

3. ker : Rm×n → An is
(
ρm×n, ψn

>

)
–computable,

4. span : Rm×n → Am is (ρm×n, ψm
<)–computable, but neither (ρm×n, ψm

>)–
computable, nor –continuous,

5. det : Rn×n → R is
(
ρn×n, ρ

)
–computable,

6. rank : Rm×n → R is
(
ρm×n, ρ<

)
–computable, but neither

(
ρm×n, ρ>

)
–

computable, nor –continuous,

7. dim :⊆ An → R is
(
ψn

<, ρ<

)
– and

(
ψn

>, ρ>

)
–computable.

We can immediately deduce an easy result about the universal solvability of
linear equations from this proposition. It is an obvious fact from linear algebra
that, given a matrix A ∈ Rm×n, the linear equation Ax = b is solvable for any
vector b ∈ Rm, if and only if rank(A) = m. Thus, “universal solvability” is an
r.e. property in A. We formulate this a little bit more precisely.

Linear Subspaces and their Dimension 7

Proposition 3 The set {A ∈ Rm×n : (∀b ∈ Rm)(∃x ∈ Rn)Ax = b} is an r.e.
open set, but it is not recursive, if n ≥ m.

Proof. If n < m, then rank(A) < m and the given set is empty, hence a
recursive open set. If n ≥ m, then the given set is r.e. open, since rank :
Rm×n → R is (ρm×n, ρ<)–computable.

2

Especially, the general linear group GLn of invertible matrices A ∈ Rn×n is
an r.e. open subset of Rn×n.

Corollary 4 GLn is an r.e. open but non-recursive subset of Rn×n for n ≥ 1.

3 Linear Subspaces and their Dimension

Considering the computability results about linear algebra known so far from
Proposition 2, what can be said about linear equations? If we consider only
homogeneous equations

Ax = 0

in the first step, then we obtain the solution space L = ker(A) and we can
deduce from Proposition 2.3 that there exists a Turing machine which takes
A as input with respect to ρm×n and which computes the space of solutions
with respect to ψn

>. Unfortunately, this type of “negative” information about
the space of solutions is not very helpful; in general it does not even suffice to
find a single point of the corresponding space (cf. [10]). Thus, it is desirable to
obtain the “positive” information (i.e. a ψn

<–name) about the space of solutions
too. On the other hand we can deduce from

rank(A) = n − dim ker(A)

and Proposition 2.6 and 2.7 that ker : Rm×n → An is not
(
ρm×n, ψn

<

)
–

continuous. In other words: without any additional input information, positive
information about the solution space is not available in principle.

What kind of additional information could suffice to obtain positive infor-
mation about the solution space? We will show that it is sufficient to know
the dimension of the solution space, i.e. codim(A) = dim ker(A) in advance.
More precisely, we will prove that given a linear subspace V ⊆ Rn w.r.t. ψn

>

and given its dimension dim(V), we can effectively find a ψn
<–name of V . The

remaining part of this section will be devoted to the proof of the following
theorem, separated in several lemmas.

8 Linear Subspaces and their Dimension

Theorem 5 There exists a Turing machine which on input of a linear sub-
space V ⊆ Rn and d = dim(V) with respect to ψn

>, ρ, respectively, outputs V
with respect to ψn

<, more precisely, the function

f :⊆ An ×R→ An, (V, d) 7→ V

with dom(f) := {(V, d) ∈ An ×R : V ∈ Ln and d = dim(V)} is ([ψn
>, ρ], ψ

n
<)–

computable.

The main technical tool for the proof of this theorem is given in the fol-
lowing definition. Here and in the following |x| :=

√∑n
i=1 |xi|2 denotes the

Euclidean norm of x = (x1, ..., xn) ∈ Rn.

Definition 6 Let W ⊆ Rn be a linear subspace and ε > 0. Then denote by

Wε :=
⋃

w∈W

B
(
w, ε|w|) =

{
x ∈ Rn : (∃w ∈W) |x− w| < ε|w|}

the relative blow-up of W by factor ε with respect to Euclidean norm.

The first useful property of the blow-up is given in the following lemma,
which roughly speaking states that each linear subspace is contained in an
arbitrarily small blow-up of a linear subspace of the same dimension but with
rational basis.

Lemma 7 Let V ⊆ Rn be a linear subspace of dimension d and ε > 0. Then
there are w1, ..., wd ∈ Qn such that V ⊆Wε∪{0}, where W := span(w1, ..., wd).

Proof. Without loss of generality we assume ε < 1 and d > 0. Let (v1, ..., vd)
denote some orthonormal basis of V . Then there are rational vectorsw1, ..., wd ∈
Qn such that |vi −wi| < ε/(2

√
d) for i = 1, ..., d. Let v ∈ V \ {0}. Then there

are λi ∈ R such that v =
∑d

i=1 λivi. Let w :=
∑d

i=1 λiwi. Then by the

Cauchy-Schwarz inequality
∑d

i=1 |λi| ≤
√
d · |v| and we obtain

|v − w| =

∣∣∣∣∣
d∑

i=1

λi(vi −wi)

∣∣∣∣∣ <
ε

2
√
d
·

d∑
i=1

|λi| ≤ ε

2
· |v|

and |v| ≤ |v−w|+ |w| < ε
2
|v|+ |w| < 1

2
|v|+ |w| and thus |v| < 2|w| and hence

|v − w| < ε|w|, i.e. v ∈ B(w, ε|w|). Altogether, V ⊆Wε ∪ {0} follows. 2

The following Figure 2 shows the blow-upWε of a one-dimensional subspace
W ⊆ R3 by factor ε = 1/4 together with a one-dimensional subspace V ⊆
Wε ∪ {0}. Before we formulate the next property of the blow-up, we prove an
intermediate lemma about linear independence.

Linear Subspaces and their Dimension 9

Figure 2: The blow-up Wε of a linear subspace

Lemma 8 For each n ≥ 1 there exists a constant ∆ > 0 such that, whenever
b1, ..., bd ∈ Rn are pairwise orthogonal normed vectors and x1, ..., xd ∈ Rn with
|bi − xi| < ∆ for i = 1, ..., d, then (x1, ..., xd) is linearly independent.

Proof. Let 0 < d ≤ n. Consider the continuous function

fd : Rd×n → R, A 7→
∑

{| det(B)| : B is a d× d submatrix of A}.

Then fd(x1, ..., xd) > 0, if and only if (x1, ..., xd) is linearly independent. More-
over, the set N ⊆ Rd×n of tuples (b1, ..., bd) of pairwise orthogonal normed
vectors is a compact subset of Rd×n and hence ε := minB∈N fd(B) exists and
ε > 0. By continuity of fd there is a δd > 0 such that

|fd(b1, ..., bd) − fd(x1, ..., xd)| < ε

for all (b1, ..., bd), (x1, ..., xd) ∈ Rd×n with |bi − xi| < δd for all i = 1, ..., d. If, in
this situation, (b1, ..., bd) ∈ N , then fd(x1, ..., xd) > 0 follows and (x1, ..., xd) is
linearly independent. Thus, the claim follows with ∆ := min0<d≤n δd. 2

From now on we assume without further mentioning that ∆ < 1 is a fixed
rational constant as in the previous lemma (where we consider n ≥ 1 to be
arbitrary but fixed). The next lemma formulates another property of the blow-
up which roughly speaking states that if a linear subspace V is contained in a
sufficiently small blow-up of a linear subspace W of the same dimension, then
this blow-up already approximates V quite well.

Lemma 9 Let V,W ⊆ Rn be linear subspaces of equal dimension d and let
ε > 0 with δ := 2

√
d · ε/(1 − ε) < ∆. If V ⊆ Wε ∪ {0}, then B(w, δ|w|)

intersects V for any w ∈W \ {0}.

10 Linear Subspaces and their Dimension

Proof. Without loss of generality we assume d > 0. Let (v1, ..., vd) de-
note some orthonormal basis of V . Since V ⊆ Wε ∪ {0}, there exist vectors
w1, ..., wd ∈W with vi ∈ B(wi, ε|wi|), i.e. |vi − wi| < ε|wi| ≤ ε|wi − vi|+ ε|vi|,
thus |vi−wi| < ε

1−ε
|vi| = ε

1−ε
< ∆. Hence (w1, ..., wd) is a basis of W by Lemma

8. Now let w ∈W \ {0}. Then there are λi ∈ R such that w =
∑d

i=1 λiwi. We

note that δ = 2
√
d · ε/(1 − ε) < ∆ < 1. We claim that v :=

∑d
i=1 λivi belongs

to B(w, δ|w|). Indeed, similarly as in the proof of Lemma 7

|v − w| =

∣∣∣∣∣
d∑

i=1

λi(vi − wi)

∣∣∣∣∣ <
ε

1 − ε
·

d∑
i=1

|λi| ≤ ε

1 − ε
·
√
d · |v| =

δ

2
· |v|

and |v| ≤ |v − w| + |w| < δ
2
|v| + |w| < 1

2
|v| + |w| implies |v| < 2|w| and thus

|v − w| < δ|w|, i.e. v ∈ B(w, δ|w|). 2

Now we formulate the last lemma of this section which states an effectivity
property of the blow-up. Roughly speaking, the property V ⊆ Wε ∪ {0} can
be recognized by a Turing machine in a certain sense.

Lemma 10 There exists a Turing machine which, on input of linear subspaces
V,W ⊆ Rn with respect to representations ψn

> and ψn
< and ε > 0 halts, if and

only if V ⊆ Wε ∪ {0}, more precisely

{(V,W, ε) ∈ An ×An ×R : V ⊆Wε ∪ {0} and ε > 0}
is [ψn

>, ψ
n
<, ρ]–r.e. open in Ln × Ln ×R.

Proof. Let V,W ⊆ Rn be linear subspaces and let ε > 0. First of all, we note
that with Sn−1 := ∂B(0, 1) = {x ∈ Rn : |x| = 1} we obtain

V ⊆ Wε ∪ {0} ⇐⇒ V ∩ Sn−1 ⊆Wε ∩ Sn−1

⇐⇒ Sn−1 ∩ (V ∩W c
ε) = ∅.

If f : N → Rn is a function such that range(f) is dense in W , then we obtain

Wε =
⋃

w∈W

B(w, ε|w|) =

∞⋃
n=0

B(f(n), ε|f(n)|).

Using representations equivalent to ψn
<, ψ

n
> (cf. [1]) it follows that (W, ε) 7→W c

ε

is ([ψn
<, ρ], ψ

n
>)–computable. Moreover, using the fact that ∩ : An ×An → An

is ([ψn
>, ψ

n
>], ψn

>)–computable (cf. [10]) it remains to prove that

{A ∈ A : Sn−1 ∩A = ∅}

Linear Subspaces and their Dimension 11

is ψn
>–r.e. open. But this follows from the proof of Lemma 5 in [12]. 2

Finally, we can combine Lemma 7, 9 and 10 to a proof of Theorem 5.

Proof of Theorem 5. Let V ⊆ Rn be a linear subspace and let d = dim(V) >
0. We claim

B(q, r) ∩ V 6= ∅ ⇐⇒ (∃w1, ..., wd ∈ Qn)(∃λ1, ..., λd ∈ Q)(∃ε > 0)

δ < ∆, (w1, ..., wd) is linearly independent,

V ⊆ Wε ∪ {0} and B(w, δ|w|) $ B(q, r),

where W := span(w1, ..., wd), w :=
∑d

i=1 λiwi 6= 0 and

δ := 2
√
d · ε/(1 − ε)

for all q ∈ Qn and r ∈ Q with r > 0. By Lemma 9 it is clear that “⇐” holds.
Let on the other hand B(q, r) ∩ V 6= ∅ with q ∈ Qn and r ∈ Q with r > 0.
Then there exists some v ∈ V ∩B(q, r), v 6= 0. Let δ(ε) := 2

√
d · ε/(1 − ε) for

all ε > 0. Since |q − v| < r there is some ε with 0 < ε < 1 such that

(
1 +

ε+ δ(ε)

1 − ε

)
|q − v|+ ε+ δ(ε)

1 − ε
|q| < r.

Let δ := δ(ε). By Lemma 7 there exist w1, ..., wd ∈ Qn such that V ⊆ Wε∪{0}
with W := span(w1, ..., wd). Thus, there is some w ∈ W \ {0} with |v −
w| < ε|w| and without loss of generality we can even assume that there are
λ1, ..., λd ∈ Q with w =

∑d
i=1 λiwi. We obtain

|q − w| ≤ |q − v|+ |v − w| < |q − v|+ ε|w|

and |w| ≤ |q−w|+|q| ≤ |q−v|+ε|w|+|q|, and hence |w| ≤ 1/(1−ε)(|q−v|+|q|)
and thus

|q − w| + δ|w| < |q − v| + (ε+ δ)|w| ≤
(

1 +
ε+ δ

1 − ε

)
|q − v|+ ε+ δ

1 − ε
|q| < r,

i.e. B(w, δ|w|) $ B(q, r). Thus, “⇒” holds too and the above equivalence is
proved.

Thus, given V by ψn
> and d = dim(V) by ρ, we can recursively enumerate

all q ∈ Qn, r ∈ Q with r > 0 such that B(q, r) ∩ V 6= ∅ by virtue of Lemma
10. In this way we obtain a ψn

<–name of V . 2

Using Theorem 5 we can improve the statement of Corollary 1 in [12] in
the following way.

12 Linear Equations

Corollary 11 The multi-valued mapping

basis :⊆ An ×R� An, (V, d) 7→ {{b1, ..., bd} ⊆ Rn : (b1, ..., bd) is a basis of V
}

with dom(basis) := {(V, d) : d = dim(V)} is ([ψn
<, ρ], ψ

n)– and ([ψn
>, ρ], ψ

n)–
computable.

Here, the ([ψn
<, ρ], ψ

n)–computability of basis has been proved in [12] and
the ([ψn

>, ρ], ψ
n)–computability follows with Theorem 5. Roughly speaking, we

can deduce that the following equivalences hold for different types of informa-
tion about linear subspaces:

positive + dimension ≡ negative + dimension ≡ positive + negative ≡ basis

These equivalences could be made precise by defining corresponding represen-
tations of Ln and by proving their equivalence, but we are not going to discuss
this here. Instead of that, we mention that for single linear subspaces one
obtains the following less uniform corollary.

Corollary 12 A linear subspace V ⊆ Rn is r.e., if and only if it is co-r.e., if
and only if it is recursive, if and only if it admits a computable basis.

Since the dimension is always a computable number, the proof of this corol-
lary follows directly from the previous corollary and the fact that the mapping
span :⊆ Rn×d → An, restricted to linear independent inputs (b1, ..., bd), is
(ρn×d, ψn)–computable, which has been proved in [12].

4 Linear Equations

In this section we want to apply the results of the previous section to solve
linear equationsAx = b. It is a well-known and obvious fact from linear algebra
that such a linear equation is solvable, if and only if rank(A) = rank(A, b). In
Proposition 3 we have seen that the property “universal solvability” is an r.e.
open property. In contrast to that “solvability” is not an r.e. open property
in A, b. Only if we know rank(A, b) in advance, the property is r.e. open. We
formulate this more precisely.

Proposition 13 The set of solvable linear equations

{(A, b, d) ∈ Rm×n ×Rm ×R : (∃x ∈ Rn) Ax = b}

is [ρm×n, ρm, ρ]–r.e. open in {(A, b, d) ∈ Rm×n ×Rm ×R : rank(A, b) = d}.

Linear Equations 13

The proof is analogous to the proof of Proposition 3. The following theorem
is the main result of this paper. It states that the solution operator of solvable
linear equations is computable, provided that the rank of the linear equation
is given as additional input.

Theorem 14 There exists a Turing machine which takes a solvable linear
equation Ax = b together with d = rank(A, b) as input and which computes the
space of solutions L = {x : Ax = b}. More precisely, the function

solve :⊆ Rm×n ×Rm ×R→ An, (A, b, d) 7→ L = {x ∈ Rn : Ax = b}
with dom(solve) := {(A, b, d) ∈ Rm×n × Rm × R : rank(A) = rank(A, b) = d}
is ([ρm×n, ρm, ρ], ψn)–computable.

Proof. Notice that x ∈ L, if and only if, in homogeneous coordinates, x is
a solution to (A, b) · t(x,−1) = 0. We therefore may determine the kernel of
(A, b) ∈ Rm×(n+1) and scale the results x such that xn+1 = −1.

To realize this idea precisely, we perform several steps: let A ∈ Rm×n be
given by ρm×n, let b ∈ Rm be given by ρm and let d = rank(A) = rank(A, b)
be given by ρ. First, we determine ker(A, b) w.r.t. ψn+1

> , which is possible
by Proposition 2.3. Then we use Theorem 5 and the formula dim ker(A, b) =
n+ 1− d to determine a ψn+1

< –name of ker(A, b). Especially, this name allows
to find effectively a point z = (z1, ..., zn+1) ∈ ker(A, b) w.r.t. ρn+1 such that
zn+1 < 0. Let ci := zi/|zn+1| for i = 1, ..., n. Then c := (c1, ..., cn) is a solution
of Ax = b and L = {x : Ax = b} = c+ker(A). Since dim ker(A) = n−d we can
compute a ψn–name of ker(A) by Proposition 2.3 and Theorem 5. Finally, we
note that the function Rn×An → An, (x,A) 7→ x+A := {x+a ∈ Rn : a ∈ A}
is ([ρn, ψn], ψn)–computable. Altogether, this allows us to compute a ψn–name
of L. 2

Regarding the proof and Corollary 11 we can even conclude the following
corollary, which states that given a solvable linear equation together with its
rank we can effectively find a specific solution and a basis for the homogeneous
equation.

Corollary 15 The multi-valued mapping solve′ :⊆ Rm×n×Rm×R� Rn×An,
(A, b, d) 7→ S, where

S =
{
(c, {b1, ..., bn−d}) ∈ Rn ×An : c+ span(b1, ..., bn−d) = {x : Ax = b}},

and

dom(solve′) := {(A, b, d) ∈ Rm×n ×Rm ×R : rank(A) = rank(A, b) = d < n},
is ([ρm×n, ρm, ρ], [ρn, ψn])–computable.

14 Linear Equations

Moreover, the previous theorem allows to deduce an immediate consequence
about single linear equations.

Corollary 16 If A ∈ Rm×n is a computable matrix and b ∈ Rm a computable
vector, then L = {x ∈ Rn : Ax = b} is a recursive set. If, additionally, Ax = b
has a unique solution x ∈ Rn, then this solution is computable.

It is interesting to note that our results also allow to handle the problem
which is inverse to solving a linear equation: given an affine subspace, we can
find a linear equation with this affine subspace as solution space.

Theorem 17 There exists a Turing machine which takes an affine space L as
input and computes a linear equation Ax = b such that

L = {x : Ax = b}.
More precisely, the function solve admits a (ψn, [ρm×n, ρm, ρ])–computable multi-
valued right inverse r :⊆ An

� Rm×n ×Rm ×R for any m ≥ n.

Proof. Let L be given w.r.t. ψn. Then we can effectively find some point
c ∈ L w.r.t. ρn. As in the proof of Theorem 14 we can compute L − c w.r.t.
ψn. By Corollary 1 from [12] we can find a basis (b1, ..., bk) ∈ Rn×k of L − c
w.r.t. ρn×k . If d := n − k = 0, then A = 0 and b = 0 defines a linear equation
with L = Rn. Otherwise, apply the Gram-Schmidt orthogonalization process
to determine an orthogonal basis (o1, ..., ok) of L− c w.r.t. ρn×k, i.e.

o1 := b1, oj+1 := bj+1 −
j∑

i=1

bj+1 · oi

|oi|2 oi

for j = 1, ..., k − 1. Then, find some vectors vectors bk+1, ..., bn ∈ Rn w.r.t.
ρn such that (o1, ..., ok, bk+1, ..., bn) is linear independent, which is possible by
Lemma 4 in [12]. Then, apply the Gram-Schmidt orthogonalization process
again to determine vectors ok+1, ..., on w.r.t. ρn such that (o1, ..., on) is an or-
thogonal basis of Rn. Thus, (ok+1, ..., on) is an orthogonal basis of the orthog-
onal complement of L− c. Now, we can compute A := t(ok+1, ..., on, 0, ..., 0) ∈
Rm×n w.r.t. ρm×n and b := Ac w.r.t. ρm. Then ker(A) = L− c and

L = {x : Ax = b}.
Altogether, the procedure describes how to compute a right inverse r of the
function solve. 2

Again we can deduce a simple fact about single spaces and equations.

Corollary 18 If L ⊆ Rn is a recursive non-empty affine subspace, then there
exists a computable matrix A ∈ Rm×n and a computable vector b ∈ Rm such
that L = {x ∈ Rn : Ax = b} for any m ≥ n.

Conclusion 15

5 Conclusion

In this paper we have continued our project to investigate computability prop-
erties in linear algebra with rigorous methods from computable analysis. This
project has been started with [12] and could be continued along several differ-
ent lines. On the one hand, it would be interesting to extend the investigation
to complexity questions. This, of course, would be a very challenging task,
since yet a comprehensive complexity theory is only available for real-number
functions and not very far developed for general operators in metric spaces (cf.
[3, 10]). On the other hand, it is a promising topic to study other parts of
linear algebra such as spectral theory or linear inequalities. Some steps in this
direction have been presented in [13, 14].

Last but not least, our results give further ground to the hope that com-
putable analysis can help to explain fundamental limitations of real number
computations. Many practical observations of numerical analysis, e.g. the fact
that numerical differentiation is much more difficult than numerical integra-
tion, already found natural explanations in computable analysis (see [10]). We
have tried to extend these applications of computable analysis to linear algebra
topics.

References

[1] V. Brattka and K. Weihrauch. Computability on subsets of Euclidean
space I: Closed and compact subsets. Theoretical Computer Science,
219:65–93, 1999.

[2] A. Grzegorczyk. On the definitions of computable real continuous func-
tions. Fundamenta Mathematicae, 44:61–71, 1957.

[3] K.-I Ko. Complexity Theory of Real Functions. Birkhäuser, Boston, 1991.

[4] C. Kreitz and K. Weihrauch. A unified approach to constructive and
recursive analysis. In M.M. Richter, E. Börger, W. Oberschelp et al. eds.,
Computation and Proof Theory, vol. 1104 of LNM, 259–278, Springer,
Berlin, 1984.

[5] D. Lacombe. Les ensembles récursivement ouverts ou fermés, et leurs
applications à l’Analyse récursive. Compt. Rend. Acad. des Sci. Paris,
246:28–31, 1958.

[6] S. Mazur. Computable Analysis, vol. 33. Razprawy Matematyczne, War-
saw, 1963.

16 REFERENCES

[7] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics.
Springer, Berlin, 1989.

[8] A. M. Turing. On computable numbers, with an application to the
“Entscheidungsproblem”. Proc. of the London Math. Soc., 42(2):230–265,
1936.

[9] A. M. Turing. Rounding-off errors in matrix processes. Quarterly Journal
of Mechanics and Applied Mathematics, 1:287–308, 1948.

[10] K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

[11] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University
Press, 1965.

[12] M. Ziegler and V. Brattka. Computing the Dimension of Linear Subspaces.
In V. Hlaváč, K.G. Jeffery, and J. Wiedermann, eds., SOFSEM 2000:
Theory and Practice of Informatics, vol. 1963 of LNCS, 450–458, Springer,
Berlin, 2000.

[13] M. Ziegler and V. Brattka. A Computable Spectral Theorem. In J. Blanck,
V. Brattka, and P. Hertling, eds., Computability and Complexity in Anal-
ysis, vol. 2064 of LNCS, 378–388, Springer, Berlin, 2001.

[14] M. Ziegler and V. Brattka. Turing computability of (non-)linear optimiza-
tion. In T. Biedl, ed., CCCG 2001, Thirteenth Canadian Conference on
Computational Geometry, 181–184, University of Waterloo, 2001.

