
Computing the Dimension of Linear Subspaces

Martin Ziegler1? and Vasco Brattka2

1 Heinz Nixdorf Institute, Fachbereich 17
University of Paderborn, 33095 Paderborn, Germany

ziegler@uni-paderborn.de

2 Theoretische Informatik I, Informatikzentrum
FernUniversität, 58084 Hagen, Germany

vasco.brattka@fernuni-hagen.de

Abstract. Since its very beginning, linear algebra is a highly algorith-
mic subject. Let us just mention the famous Gauß Algorithm which
was invented before the theory of algorithms has been developed. The
purpose of this paper is to link linear algebra explicitly to computable
analysis, that is the theory of computable real number functions. Espe-
cially, we will investigate in which sense the dimension of a given linear
subspace can be computed. The answer highly depends on how the lin-
ear subspace is given: if it is given by a finite number of vectors whose
linear span represents the space, then the dimension does not depend
continuously on these vectors and consequently it cannot be computed.
If the linear subspace is represented via its distance function, which is a
standard way to represent closed subspaces in computable analysis, then
the dimension does computably depend on the distance function.

1 Introduction

Computational aspects of linear algebra are mostly studied with respect to their
algebraic complexity, that is, in machine models capable of processing in unit
time real numbers. Digital computers can however work on finite information
like integers or floating point numbers as approximation of reals. The common
implicit believe (or hope) is that, as precision increases, a program’s approximate
output tends to the desired exact result.

We investigate computational aspects of linear algebra from the somewhat
different point of view of computable analysis, which offers a precise framework
for treating computability aspects of real number computations based on Turing
machines. Starting with Turing’s own famous paper [9] real number computa-
tions have been investigated using his machine model. Later on, the theory has
been further developed by Grzegorczyk [4], Lacombe [6], Pour-El and Richards
[8], Kreitz and Weihrauch [10], Ko [5] and many others. We have essentially
adopted Weihrauch’s approach [10], the so-called Type-2-Theory of Effectivity,
which allows to express computations with real number, continuous functions
and subsets in a highly uniform way.
? Work partially supported by DFG Grant Me872/7-3

In constructive analysis [1], as well as in computable analysis closed subsets
are often represented by distance functions, which, roughly speaking, play the
role of continuous substitutes for characteristic functions (cf. [2] for a survey).
Such representations of sets by distance functions can also be considered for
constructions of data structures for solid modeling and other CAD applications
(cf. [7]). If it appears that the result of a computation with sets is a linear
subspace, one is interested in computing the dimension and a basis of this space.
Our main result proves that both is possible.

The following section contains a short introduction to computable analysis
and the notions used there. Section 3 presents our computability results on the
dimension of linear subspaces.

2 Computable Analysis

In this section we briefly present some basic notions from computable analysis
(based on the approach of Type-2 theory of effectivity) and some direct conse-
quences of well-known facts. For a precise and comprehensive reference we refer
the reader to [10]. Roughly speaking, a partial real number function f :⊆Rn → R

is computable, if there exists a Turing machine which transfers each sequence
p ∈ Σω that represents some input x ∈ Rn into some sequence FM (p) which
represents the output f(x). Since the set of real numbers has continuum cardi-
nality, real numbers can only be represented by infinite sequences p ∈ Σω (over
some finite alphabet Σ) and thus, such a Turing machine M has to compute
infinitely long. But in the long run it transfers each input sequence p into an
appropriate output sequence FM(p). It is reasonable to allow only one-way out-
put tapes for infinite computations since otherwise the output after finite time
would be useless (because it could possibly be replaced later by the machine). It
is straightforward how this notion of computability can be generalized to other
sets X with a corresponding representation, that is a surjective partial mapping
δ :⊆ Σω → X.

Definition 1 (Computable functions). Let δ, δ′ be representations of X, Y ,
respectively. A function f :⊆ X → Y is called (δ, δ′)–computable, if there exists
some Turing machine M such that δ′FM (p) = fδ(p) for all p ∈ dom(fδ).

Here, FM :⊆ Σω → Σω denotes the partial function, computed by the Turing
machine M . It is straightforward how to generalize this definition to functions
with several inputs and it can even be generalized to multi-valued operations
f :⊆ X � Y , where f(x) is a subset of Y instead of a single value. In this case
we replace the condition in the definition above by δ′FM (p) ∈ fδ(p).

Already in case of the real numbers it appears that the defined notion of
computability sensitively relies on the chosen representation of the real num-
bers. The theory of admissible representations completely answers the question
how to find “reasonable” representations of topological spaces [10]. Let us just
mention that for admissible representations δ, δ′ each (δ, δ′)–computable function
is necessarily continuous (w.r.t. the final topologies of δ, δ′).

An example of an admissible representation of the real numbers is the so-
called Cauchy representation ρ :⊆ Σω → R, where roughly speaking, ρ(p) = x
if p is an (appropriately encoded) sequence of rational numbers (qi)i∈Nwhich
converges rapidly to x, i.e. |xi − xk| ≤ 2−k for all i > k. By standard coding
techniques this representation can easily be generalized to a representation of
the n-dimensional Euclidean space ρn :⊆ Σω → Rn and to a representation of
m× n matrices ρm×n :⊆ Σω → Rm×n.

If δ, δ′ are admissible representations of topological spaces X, Y , respectively,
then there exists a canonical representation [δ, δ′] :⊆ Σω → X×Y of the product
X × Y and a canonical representation [δ → δ′] :⊆ Σω → C(X, Y) of the space
C(X, Y) of the total continuous functions f : X → Y . We just mention that
these representations allow evaluation and type conversion (which correspond
to an utm- and smn-Theorem). Evaluation means that the evaluation function
C(X, Y)×X → Y, (f, x) 7→ f(x) is ([[δ → δ′], δ], δ′)–computable and type conver-
sion means that a function f : Z×X → Y is ([δ′′, δ], δ′)–computable, if and only
if the canonically associated function f ′ : Z → C(X, Y) with f ′(z)(x) := f(z, x)
is (δ′′, [δ → δ′])–computable. As a direct consequence we obtain that matrices
A ∈ Rm×n can effectively be identified with linear mappings f ∈ Lin(Rn,Rm).

Lemma 2. The correspondence between matrices and vector space homomor-
phisms is effective. This means that the mappings

Lin(Rn,Rm) → Rm×n,
(
x 7→ A · x) 7→ A

Rm×n → Lin(Rn,Rm), A 7→ (
x 7→ A · x)

are
(
[ρn → ρm], ρm×n

)
– and

(
ρm×n , [ρn → ρm]

)
–computable, respectively.

Since a mapping like rank : Rm×n → R, which associates to each matrix
A ∈ Rm×n the dimension of its image, can only take finitely many different
values, it is necessarily discontinuous and thus not (ρn×m, ρ)–computable. Later
on we will see that this mapping has a weaker computability property: given the
matrix A we can at least find an increasing sequence of values which converge to
rank(A). To express facts like this precisely, we will use two further representa-
tions ρ<, ρ> :⊆ Σω → R. Roughly speaking, ρ<(p) = x if p is an (appropriately
encoded) list of all rational numbers q < x. (Analogously, ρ> is defined with
q > x.) It is a known fact that a mapping f :⊆ X → R is (δ, ρ)–computable, if
and only if it is (δ, ρ<)– and (δ, ρ>)–computable [10].

Occasionally, we will also use some standard representation νN, νQof the nat-
ural numbers N = {0, 1, 2, ...} and the rational numbers Q, respectively. More-
over, we will also need a representation for the space Ln of linear subspaces
V ⊆ Rn. Since all linear subspaces are non-empty closed spaces, we can use
well-known representations of the hyperspace An of all closed non-empty sub-
sets A ⊆ Rn (cf. [2, 10]). One way to represent such spaces is via the distance
function dA : Rn → R, defined by dA(x) := infa∈A d(x, a), where d : Rn×Rn → R

denotes the Euclidean metric of Rn. Altogether, we define three representations
ψn, ψn

<, ψ
n
> :⊆ Σω → An. We let ψn(p) = A, if and only if [ρn → ρ](p) = dA. In

other words, p encodes a set A w.r.t. ψn , if it encodes the distance function dA

w.r.t. [ρn → ρ]. Analogously, let ψn
<(p) = A, if and only if [ρn → ρ>](p) = dA

and let ψn
>(p) = A, if and only if [ρn → ρ<](p) = dA. One can prove that ψn

<

encodes “positive” information about the set A (all open rational balls B(q, r)
which intersect A can be enumerated), and ψn

> encodes “negative” information
about A (all closed rational balls B(q, r) which do not intersect A can be enu-
merated). It is known that a mapping f :⊆ X → An is (δ, ψn)–computable, if
and only if it is (δ, ψn

<)– and (δ, ψn
>)–computable [10]. We mention that

a) the operation (f, A) 7→ f−1(A) ⊆Rn is
(
[ρn → ρm], ψm

> , ψ
n
>

)
–computable,

b) the operation (f, B) 7→ f(B) ⊆ Rm is
(
[ρn → ρm], ψn

<, ψ
m
<

)
–computable.

Together with Lemma 2 we obtain the following computability facts about kernel
and image of matrices.

Lemma 3. Given an m×n matrix A, its kernel can effectively be approximated
from outside and its image can effectively be approximated from inside. More
precisely, the mappings

ker : Rm×n → An, A 7→ {
x ∈ Rn : A · x = 0

}

img : Rm×n → Am, A 7→ {
A · x : x ∈ Rn

}

are
(
ρm×n , ψn

>

)
– and

(
ρm×n, ψm

<

)
–computable, respectively.

Finally, we will also use the notion of an r.e. open set U ⊆ Rm×n, which is a
set such that there exists a (ρm×n , ρ)–computable function f : Rm×n → Rwith
Rm×n \ U = f−1{0}. Given a representation δ of X, we will say more generally
that a subset U ⊆ Y ⊆ X is δ–r.e. open in Y , if δ−1(U) is r.e. open in δ−1(Y).
Here a set A ⊆ B ⊆ Σω is called r.e. open in B, if there exists some computable
function f :⊆ Σω → Σ∗ with dom(f) ∩ B = A. Intuitively, a set U is δ–r.e.
open in Y , if and only if there exists a Turing machine which halts for an input
x ∈ Y given w.r.t. δ, if and only if x ∈ U . It is known that a set U ⊆ Rm×n is
ρm×n–r.e. open in Rm×n, if and only if it is r.e. open. If a set U ⊆ X is δ–r.e.
open in X, then we will say for short that it is δ–r.e. open.

3 Computing the Dimension

In this section we will discuss the problem to determine the dimension of a given
linear subspace. We will see that in our setting this question is somehow related
to the problem to determine a basis of a given linear space. First we note that
we can compute the determinant of a matrix A = (aij) ∈ Rn×n using the well-
known formula det(A) =

∑
σ∈Sn

sign(σ)
∏n

i=1 aσ(i)i, where Sn denotes the set
of all permutations σ : {1, ..., n}→ {1, ..., n}. Since addition and multiplication
are computable on the real numbers and by applying certain obvious closure
schemes we can deduce:

Lemma 4. Given an n× n matrix we can compute its determinant:

det : Rn×n → R, A 7→ det(A)

is
(
ρn×n, ρ

)
–computable.

Now we can test a tuple (x1, ..., xn) ∈ Rm×n with n ≤ m for linear inde-
pendence by searching for a non-zero determinant of the n × n sub-matrices
of (x1, ..., xn). Using this idea we can define a function f : Rm×n → R by
f(A) :=

∑
S<A | det(S)|, where the sum is over all n × n sub-matrices S of A.

Thus f has the property that a tuple (x1, ..., xn) is linearly independent, if and
only if f(x1, ..., xn) > 0. Since f is computable by the previous lemma, this
proves the following:

Lemma 5. The property “linear independence”, i.e. the set

{(x1, ..., xn) ∈ Rm×n : (x1, ..., xn) linearly independent },

is r.e. open.

Now we are prepared to investigate computability properties of the rank map-
ping rank : Rm×n → R which maps a matrix A to the dimension of its image.
Since the image of the rank mapping contains finitely many different values, the
rank mapping cannot be continuous for n,m ≥ 1. Nevertheless, we can approx-
imate the rank from below. Using the previous lemma we can systematically
search for a maximal linearly independent tuple among the column vectors of
the matrix A and we can determine an increasing sequence of numbers k ∈ N in
this way which converges to rank(A).

Proposition 6. The rank of a matrix can be approximated from below:

rank : Rm×n → R, A 7→ rank(A)

is
(
ρm×n, ρ<

)
–computable, but neither

(
ρm×n , ρ>

)
–computable, nor continuous.

The linear span mapping which maps a matrix A to the linear span of its
column vectors has similar properties as the rank mapping. If we know a basis
of a linear subspace, we can even obtain complete information about its span.

Proposition 7. The linear span mapping

span : Rm×n → Am, (x1, ..., xn) 7→
⋂{

V ∈ Lm : x1, ..., xn ∈ V
}

is (ρm×n, ψm
<)–computable, but neither (ρm×n , ψm

>)–computable nor continuous.
Restricted to linear independent inputs (x1, ..., xn) ∈ Rm×n the linear span map-
ping is even (ρm×n, ψm)–computable.

Proof. The first property follows directly from Lemma 3 since span(A) = img(A).
It is easy to see that the linear span mapping is not continuous in the zero matrix
A = 0. Finally, we have to prove that the linear span mapping is (ρm×n , ψm

>)–
computable, restricted to linear independent inputs. If n = m, then this is triv-
ial since span(x1, ..., xm) = Rm for linearly independent (x1, ..., xm). For the
case n < m we will again use the function f : Rm×(n+1) → R, defined by
f(A) :=

∑
S<A | det(S)|, where the sum is over all (n+1)× (n+1) sub-matrices

S of A. As we have seen, f is computable and (x1, ..., xn, x) is linearly indepen-
dent, if and only if f(x1 , ..., xn, x) 6= 0. Especially, we can deduce

span(x1, ..., xn) = {x ∈ Rm : f(x1 , ..., xn, x) = 0},
provided that (x1, ..., xn) is linearly independent. Using type conversion we can
show that g : Rm×n → C(Rm,R) with g(x1, ..., xn)(x) := f(x1, ..., xn, x) is
(ρm×n, [ρm → ρ])–computable. Moreover, as we have already stated, it is known
that C(Rm,R) → Am, h 7→ h−1{0} is ([ρm → ρ], ψm

>)–computable. Thus, span,
restricted to linearly independent inputs, is (ρm×n, ψm

>)–computable. ut
As we have seen, the dimension of a linear subspace cannot be computed

from a tuple of vectors whose linear span generates the subspace. In general the
information included in such a tuple does not suffice to determine upper bounds
on the dimension. If we additionally supply negative information about the linear
subspace, the dimension operator becomes computable. As a preparation we first
prove that the set with the zero-space as single point is r.e. open in the set of
linear subspaces w.r.t. negative information.

Lemma 8. The set {{0}} ⊆ An is ψn
>–r.e. open in Ln.

Proof. We note that it is known that given a ψn
>–name p of a subspace V , we

can effectively find a [νN→ ν2
Q]–name q of a function f : N → Q2 such that

Rn \ V =
⋃∞

k=0 B(ck, rk), where (ck, rk) := f(k) (cf. [2]). In other words, we
can effectively represent V by a sequence of open rational balls, whose union
exhausts the exterior of V . For a set V ∈ Ln we obtain

V = {0} ⇐⇒ V ∩ Sn−1 = ∅,
where Sn−1 := ∂B(0, 1) = {(x1, ..., xn) ∈ Rn : x2

1 + ...+x2
n = 1} denotes the unit

sphere of the n-dimensional space Rn. Since Sn−1 is compact, we can conclude

V ∩ Sn−1 = ∅ ⇐⇒ (∃m) Sn−1 ⊆
m⋃

k=0

B(ck, rk).

Since Sn−1 is a recursive compact set, i.e. there exists some computable s such
that ψn(s) = Sn−1, we can deduce that we can even effectively find anm with the
property above, if such an m exists. This proves that there exists a computable
function f :⊆ Σω → Σ∗ such that p ∈ dom(f), if and only if ψn

>(p) = {0}, for
all p ∈ (ψn

>)−1(Ln). ut
No we are prepared to prove the following main result of our paper.

Theorem 9. One can compute the dimension of a given linear subspace:

dim :⊆ An → R, V 7→ dim(V)

is
(
ψn

<, ρ<

)
– and

(
ψn

>, ρ>

)
–computable. It is in particular

(
ψn, ρ)–computable.

Proof. First of all, it is known that given a ψn
<–name p of a subspace V , we can

effectively find a [νN→ ρn]–name q of a function f : N→ Rn such that the image
f(N) is dense in V (cf. [2]). We claim that if dim(V) = k, then there exists a tuple
(i1, ..., ik) ∈ Nk such that (f(i1), ..., f(ik)) is a basis of V . If (x1, ..., xk) ∈ Rn×k is
an arbitrary basis of V , then there exist an open neighbourhood U of (x1, ..., xk)
which only consists of tuples of linear independent vectors (by Lemma 5 linear
independence especially is an open property). Since f(N) is dense in V , there
exists a tuple (i1, ..., ik) ∈ Nk such that (f(i1), ..., f(ik)) ∈ U ∩ V k. This proves
the claim. Thus, we can use the name q to search for tuples (i1, ..., im) ∈ Nm

of maximal size m such that (f(i1), ..., f(im)) is linear independent. In this way
we can produce an increasing sequence m1, m2, ... of natural numbers. Lemma
5 guarantees that the whole procedure is effective and the claim proved before
guarantees that the sequence converges to dim(V).

We note that it is known that the intersection operation An × An → An,
(A,B) 7→ A ∩ B is ([ψn

>, ψ
n
>], ψn

>)–computable (cf. [10]). If we can find some
linear subspace U of Rn with U ∩ V = {0} and dim(U) = n − m, then we
can conclude dim(V) + dim(U) = dim(U ⊕ V) ≤ n and thus dim(V) ≤ m. On
the other hand, if dim(V) ≤ m, then there exists always such a subspace U .
Thus, to guarantee dim(V) ≤ m, it suffices to find n − m linear independent
vectors x1, ..., xn−m such that span(x1, ..., xn−m) ∩ V = {0}. If such vectors
exist, then there exist also rational vectors x1, ..., xn−m ∈ Qn with the same
property, since linear independence is an open property by Lemma 5, the test on
equality with {0} is open by Lemma 8, the linear span mapping (by Proposition
7) and intersection are continuous (w.r.t. the final topology of ψn

>). Thus, we can
produce a decreasing sequence of natural number m1, m2, ... by searching for a
minimal m and linear independent rational vectors x1, ..., xn−m ∈ Qn with the
property above. The considerations above together with Lemma 5, Proposition
7 and Lemma 8 show that the whole procedure is effective and that the sequence
converges to dim(V). ut

Using the same method as in the proof before, we can construct a basis of a
linear subspace as a set w.r.t. ψn

<. If we know the dimension in advance, then by
virtue of Lemma 5 we can determine a basis directly by representing its vectors.

Corollary 10. One can effectively find a basis of a given linear subspace. More
precisely, the multi-valued mapping

basis :⊆ Am
� Am, V 7→ {{b1, ..., bn} ⊆ Rm : (b1, ..., bn) basis of V

}

is
(
ψm

< , ψ
m
<

)
– and

(
ψm, ψm

)
–computable. If n := dim(V) is known in advance,

basis′ :⊆ Am
� Rm×n, V 7→ {(b1, ..., bn) ∈ Rm×n : (b1, ..., bn) basis of V }

is even
(
ψm

< , ρ
m×n

)
–computable.

We can also effectively compute complementary spaces.

Corollary 11. Given a linear subspace V ⊆ Rm, one can effectively find a
linear subspace U ⊆ Rm such that V ⊕U = Rm. More precisely, the multi-valued
mapping

compl :⊆ Am
� Am, V 7→ {U ∈ Lm : V ⊕ U = Rm}

is (ψm, ψm)–computable.

4 Conclusion

Computations with sets find an increasing interest in computable analysis, cf. for
instance [3, 7, 12, 11, 2]. One of the motivations is to find suitable data structures
for solid modeling and other practical applications of computations with sets [7].
We have presented a result which shows that the dimension of a linear subspace
can be computed, provided that the subspace is represented via its distance
function. This result can be considered as a starting point of “computable linear
algebra”. Many interesting questions in this field still remain open.

References

1. Errett Bishop and Douglas S. Bridges. Constructive Analysis, Springer, Berlin,
1985.

2. Vasco Brattka and Klaus Weihrauch. Computability on subsets of Euclidean space
I: Closed and compact subsets. Theoretical Computer Science, 219:65–93, 1999.

3. Xiaolin Ge and Anil Nerode. On extreme points of convex compact Turing located
sets. In Anil Nerode and Yu. V. Matiyasevich, editors, Logical Foundations of
Computer Science, vol. 813 of LNCS, 114–128, Berlin, 1994. Springer.

4. Andrzej Grzegorczyk. On the definitions of computable real continuous functions.
Fundamenta Mathematicae, 44:61–71, 1957.

5. Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer
Science. Birkhäuser, Boston, 1991.

6. Daniel Lacombe. Les ensembles récursivement ouverts ou fermés, et leurs applica-
tions à l’Analyse récursive. Comp. Rend. Acad. des Sci. Paris, 246:28–31, 1958.

7. Andrè Lieutier. Toward a data type for solid modeling based on domain theory.
In K.-I Ko, A. Nerode, M.B. Pour-El, K. Weihrauch, and J. Wiedermann, eds,
Computability and Complexity in Analysis, vol. 235 of Informatik Berichte, pages
51–60. FernUniversität Hagen, August 1998.

8. Marian B. Pour-El and J. Ian Richards. Computability in Analysis and Physics.
Perspectives in Mathematical Logic. Springer, Berlin, 1989.

9. Alan M. Turing. On computable numbers, with an application to the “Entschei-
dungsproblem”. Proceedings of the London Mathematical Society, 42(2):230–265,
1936.

10. Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
11. Ning Zhong. Recursively enumerable subsets of Rq in two computing models:

Blum-Shub-Smale machine and Turing machine. Theoretical Computer Science,
197:79–94, 1998.

12. Qing Zhou. Computable real-valued functions on recursive open and closed subsets
of Euclidean space. Mathematical Logic Quarterly, 42:379–409, 1996.

