The Inversion Problem
for Computable Linear Operators

Vasco Brattka*

Theoretische Informatik I, Informatikzentrum
FernUniversitat, 58084 Hagen, Germany
vasco.brattka@fernuni-hagen.de

Abstract. Given a program of a linear bounded and bijective opera-
tor T, does there exist a program for the inverse operator 7-'? And if
this is the case, does there exist a general algorithm to transfer a pro-
gram of T into a program of 7~ '? This is the inversion problem for
computable linear operators on Banach spaces in its non-uniform and
uniform formulation, respectively. We study this problem from the point
of view of computable analysis which is the Turing machine based theory
of computability on Euclidean space and other topological spaces. Using
a computable version of Banach’s Inverse Mapping Theorem we can an-
swer the first question positively. Hence, the non-uniform version of the
inversion problem is solvable, while a topological argument shows that
the uniform version is not. Thus, we are in the striking situation that any
computable linear operator has a computable inverse while there exists
no general algorithmic procedure to transfer a program of the operator
into a program of its inverse. As a consequence, the computable version
of Banach’s Inverse Mapping Theorem is a powerful tool which can be
used to produce highly non-constructive existence proofs of algorithms.
We apply this method to prove that a certain initial value problem ad-
mits a computable solution.

Keywords: computable analysis, linear operators, inversion problem.

1 Introduction

Given two Banach spaces X,Y and a linear bounded and bijective operator
T : X — Y, Banach’s Inverse Mapping Theorem [10] guarantees that the inverse
T-!:Y — X is a linear bounded operator as well. Hence, it is reasonable to
ask for computable versions of this fact, i.e. do the implications

(1) T computable => T~! computable (non-uniform inversion problem),
(2) T +— T~! computable (uniform inversion problem)

hold? Of course, both questions have to be specified carefully. In particular, the
computability notion in the uniform case should reflect the fact that algorithms
of T are transfered into algorithms of 7~ 1.

* Work partially supported by DFG Grant BR 1807/4-1

Such meaningful computability notions are provided by computable analysis,
which is the Turing machine based theory of computability on real numbers and
other topological spaces. Pioneering work on this theory has been presented by
Turing [22], Banach and Mazur [1], Lacombe [17] and Grzegorczyk [11]. Recent
monographs have been published by Pour-El and Richards [19], Ko [15] and
Weihrauch [24]. Certain aspects of computable functional analysis have already
been studied by several authors, see for instance [18,9, 23,27, 28, 25, 26].

From the computational point of view Banach’s Inverse Mapping Theorem
is interesting, since its classical proof relies on the Baire Category Theorem
and therefore it counts as “non-constructive” (see [5] for a discussion of com-
putable versions of the Baire Category Theorem). However, a “non-constructive”
application of the Baire Category Theorem suffices in order to prove that the
non-uniform inversion problem (1) is solvable; but at the same time the non-
constructiveness is the reason why the uniform inversion problem (2) is not
solvable.

We close the introduction with a short survey of the organisation of this
paper. In the following Section 2 we will present some preliminaries from com-
putable analysis. In Section 3 we discuss computable metric spaces, computable
Banach spaces and effective open subsets. In Section 4 we investigate computable
versions of the Open Mapping Theorem and based on these results we study Ba-
nach’s Inverse Mapping Theorem in Section 5. Finally, in Section 6 we apply the
computable version of this theorem in order to prove that a certain initial value
problem admits a computable solution. In this extended abstract most proofs
are omitted; they can be found in [4] (or in the Appendix).

2 Preliminaries from Computable Analysis

In this section we briefly summarize some notions from computable analysis. For
details the reader is refered to [24]. The basic idea of the representation based
approach to computable analysis is to represent infinite objects like real numbers,
functions or sets, by infinite strings over some alphabet X' (which should at least
contain the symbols 0 and 1). Thus, a representation of a set X is a surjective
mapping § :C X¥¥ — X and in this situation we will call (X, §) a represented
space. Here X* denotes the set of infinite sequences over X and the inclusion
symbol is used to indicate that the mapping might be partial. If we have two
represented spaces, then we can define the notion of a computable function.

Definition 1 (Computable function). Let (X,d) and (Y,d’) be represen-
ted spaces. A function f :C X — Y is called (§,6")-computable, if there exit
some computable function F' :C X% — X% such that ¢'F(p) = fi(p) for all
p € dom(f9).

Of course, we have to define computability of functions F :C X* — 3¢
to make this definition complete, but this can be done via Turing machines: F’
is computable if there exists some Turing machine, which computes infinitely

long and transforms each sequence p, written on the input tape, into the cor-
responding sequence F'(p), written on the one-way output tape. Later on, we
will also need computable multi-valued operations f :C X = Y, which are de-
fined analogously to computable functions by substituting ¢'F(p) € fd(p) for
the equation in Definition 1 above. If the represented spaces are fixed or clear
from the context, then we will simply call a function or operation f computable.

For the comparison of representations it will be useful to have the notion of
reducibility of representations. If §, ¢’ are both representations of a set X, then ¢
is called reducible to §', § < ¢ in symbols, if there exists a computable function
F :C ¥¥ — X% such that é(p) = ¢'F(p) for all p € dom(é). Obviously, § < ¢
holds, if and only if the identity id : X — X is (§, §’)-computable. Moreover, §
and ¢’ are called equivalent, 6 = 6’ in symbols, if § < ¢’ and &’ < 6.

Analogously to the notion of computability we can define the notion of (4, §") -
continuity for single- and multi-valued operations, by substituting a continuous
function F' :C X% — X for the computable function F' in the definitions above.
On X we use the Cantor topology, which is simply the product topology of the
discrete topology on Y. The corresponding reducibility will be called continuous
reducibility and we will use the symbols <; and =; in this case. Again we will
simply say that the corresponding function is continuous, if the representations
are fixed or clear from the context. If not mentioned otherwise, we will always
assume that a represented space is endowed with the final topology induced by
its representation.

This will lead to no confusion with the ordinary topological notion of conti-
nuity, as long as we are dealing with admissible representations. A representation
0 of a topological space X is called admissible, if 6 is maximal among all continu-
ous representations ¢’ of X, i.e. if 8 <; § holds for all continuous representations
0" of X. If 6,8’ are admissible representations of topological spaces X, Y, then
a function f :C X — Y is (§,6")—continuous, if and only if it is sequentially
continuous, cf. [20, 6].

Given a represented space (X, d), we will occasionally use the notions of a
computable sequence and a computable point. A computable sequence is a com-
putable function f : N — X, where we assume that N = {0,1,2,...} is repre-
sented by dy(1"0%) := n and a point € X is called computable, if there is a
constant computable sequence with value x.

Given two represented spaces (X,0) and (Y,d’), there is a canonical rep-
resentation [0,¢'] of X x Y and a representation [§ — §'] of certain functions
f: X = Y.If 6,0 are admissible representations of sequential topological spaces,
then [§ — §’] is actually a representation of the set C(X,Y) of continuous func-
tions f : X — Y. If Y = R, then we write for short C(X) := C(X,R). The
function space representation can be characterized by the fact that it admits
evaluation and type conversion.

Proposition 2 (Evaluation and type conversion). Let (X,6) and (Y,d)
be admissibly represented sequential topological spaces and let (Z,56") be a repre-
sented space. Then:

(1) (Evaluation) ev : C(X,Y) x X — Y,(f,z) — f(z) is ([[§ — ¢],6],0)—
computable,

(2) (Type conversion) f: ZxX — Y, is ([0", 8], 0")—computable, if and only if
the function f : Z — C(X,Y), defined by f(2)(x) := f(z,z) is (3”,[6 — &'])~
computable.

The proof of this proposition is based on a version of smn— and utm-Theorem,
see [24,20]. If (X,4), (Y,d’) are admissibly represented sequential topological
spaces, then in the following we will always assume that C(X,Y) is represented by
[0 — ¢']. Tt follows by evaluation and type conversion that the computable points
n (C(X,Y), [0 — 0']) are just the (d, §’)—computable functions f : X — Y. Since
evaluation and type conversion are even characteristic properties of the function
space representation [0 — 4'], it follows that this representation actually reflects
the properties of programs. That is, a name p of a function f = [§ — §'](p)
can be considered as a “program” of f since it just contains sufficiently much
information in order to evaluate f. This corresponds to the well-known fact that
the compact-open topology is the appropriate topology for programs [21] and
actually, if (X,6), (Y,¢’) are admissibly represented separable Banach spaces,
one obtains the compact open topology as final topology of [§ — '] (see [20]).

If (X,9) is a represented space, then we will always assume that the set
of sequences X is represented by 6" := [0y — d]. The computable points in
(XN, 6M) are just the computable sequences in (X, §). Moreover, we assume that
X" is always represented by 6", which can be defined inductively by §' := § and
Sl = 1[6m,6).

3 Computable Metric and Banach Spaces

In this section we will briefly discuss computable metric spaces and computable
Banach spaces. The notion of a computable Banach space will be the central
notion for all following results. Computable metric spaces have been used in the
literature at least since Lacombe [17]. Pour-El and Richards have introduced a
closely related axiomatic characterization of sequential computability structures
for Banach spaces [19] which has been extended to metric spaces by Mori, Tsujii,
and Yasugi [27].

We mention that we will denote the open balls of a metric space (X, d) by
B(z,e) :={y € X : d(x,y) < e} for all z € X, e > 0 and correspondingly closed
balls by B(z,¢) := {y € X : d(z,y) < }. Occasionally, we denote complements
of sets A C X by A°:= X\ A.

Definition 3 (Computable metric space). A tuple (X,d,«) is called a
computable metric space, if

(1) d: X x X — R is a metric on X,
(2) @:N — X is a sequence which is dense in X,
(3) do(ax a):N? - R is a computable (double) sequence in R.

Here, we tacitly assume that the reader is familiar with the notion of a
computable sequence of reals, but we will come back to that point below. Oc-
casionally, we will say for short that X is a computable metric space. Obviously,
a computable metric space is especially separable. Given a computable metric
space (X, d, @), its Cauchy representation éx :C X% — X can be defined by

Sx (01™0 o1 12t) = lim a(n;)
1—00

for all n; such that (a(n;))ien converges and d(a(n;), a(n;)) <27 for all j > i
(and undefined for all other input sequences). In the following we tacitly assume
that computable metric spaces are represented by their Cauchy representations.
If X is a computable metric space, then it is easy to see that d : X x X — R
becomes computable [6]. All Cauchy representations are admissible with respect
to the corresponding metric topology.

An important computable metric space is (R,dg, ag) with the Euclidean
metric dgr(z, y) := |z —y| and some standard numbering of the rational numbers
Q,as ag(i, 4, k) := (i—j)/(k+1). Here, (i,j) :==1/2(i+j)(i+ 75+ 1)+ denotes
Cantor pairs and this definition is extended inductively to finite tuples. Similarly,
we can define (p, q) € X¥ for sequences p, g € X*. For short we will occasionally
write k := ag (k). In the following we assume that R is endowed with the Cauchy
representation g induced by the computable metric space given above. This
representation of R can also be defined, if (R, dg, ag) just fulfills (1) and (2)
of the definition above and this leads to a definition of computable real number
sequences without circularity. Occasionally, we will also use the represented space
(Q,dp) of rational numbers with dgp(1"0%) := m. Computationally, we do not
have to distinguish the complex numbers C from B2 We will use the notation
IF for a field which always might be replaced by both, R or C. Correspondingly,
we use the notation (IF, dy, ar) for a computable metric space which might be
replaced by both computable metric spaces (R, dg, ag) and (C, d¢, ag) (defined
analogously). We will also use the notation Qy = range(ay), i.e. Qg = @ and
Qc = Q[i].

For the definition of a computable Banach space it is helpful to have the
notion of a computable vector space which we will define next.

Definition 4 (Computable vector space). A represented space (X,J) is
called a computable vector space (over F), if (X, +,-,0) is a vector space over IF
such that the following conditions hold:

(1) +: X x X — X, (z,y) — z + y is computable,
(2) :FxX — X, (a,z)— a-x is computable,
(3) 0 € X is a computable point.

If (X,d) is a computable vector space over F, then (F,dy), (X™,0™) and
(XN, 6M) are computable vector spaces over F. If, additionally, (X,d), (Y,d)
are admissibly represented second countable Ty—spaces, then the function space
(C(Y, X),[8" — 0]) is a computable vector space over [F. Here we tacitly assume
that the vector space operations on product, sequence and function spaces are

defined componentwise. The proof for the function space is a straightforward
application of evaluation and type conversion. The central definition for the
present investigation will be the notion of a computable Banach space.

Definition 5 (Computable normed space). A tuple (X, || ||,e) is called a
computable normed space, if

(1) |Ill: X - Ris anormon X,
(2) e: N — X is a fundamental sequence, i.e. its linear span is dense in X,
. k
(3) (X,d,ae) with d(z,y) := ||z — y|| and ae(k, (no,...,nk)) = Y ;o ar(ni)e;,
is a computable metric space with Cauchy representation Jdx,
(4) (X,dx) is a computable vector space over [F.

If in the situation of the definition the underlying space (X,|| ||) is even
a Banach space, i.e. if (X,d) is a complete metric space, then (X,|| ||,e) is
called a computable Banach space. If the norm and the fundamental sequence
are clear from the context or locally irrelevant, we will say for short that X is a
computable normed space or a computable Banach space. We will always assume
that computable normed spaces are represented by their Cauchy representations,
which are admissible with respect to the norm topology. If X is a computable
normed space, then || || : X — R is a computable function. Of course, all
computable Banach spaces are separable. In the following proposition a number
of computable Banach spaces are defined.

Proposition 6 (Computable Banach spaces). Let p € R be a computable
real number with 1 < p < oo and let a < b be computable real numbers. The
following spaces are computable Banach spaces over IF.

(Z) (Fna || ||oo;€) with

® ||(x1;$2,---,$n)||oo = max |xk|,
S lifi=k
o ¢; =e(i) = (€1, €2, ..., €in) With e, := {0 olse .
(2) (L, || lp: €) with

o lpi={z €F":||z]l, <oo},

(o]
o ||(zr)renllp == ¢/ D |xklP,

=0 Lifi=k

o ¢; = e(i) = (ek)ken with e = {0 olse
(3) (C™a, 01| l(n), €) with
o C™a,b]:= {f:]a,b] — R: f n-times continuously differentiable},
=3 @t
o [l = 2 max S0,
o c;(t) =e(i)(t) =t

We leave it to the reader to check that these spaces are actually computable
Banach spaces. If not stated differently, then we will assume that (F",|| ||) is
endowed with the maximum norm || ||so. It is known that the Cauchy represen-
tation d¢q,p) Of Ca,b] = C([a,b],R) is equivalent to [0a,b) — OR], Where djq)

denotes the restriction of dg to [a, b] (cf. Lemma 6.1.10 in [24]). In the following
we will occasionally utilize the sequence spaces ¢, to construct counterexamples.

Since we will study the Open Mapping Theorem in the next section, we have
to compute with open sets. Therefore we need representations of the hyperspace
O(X) of open subsets of X. Such representations have been studied in the Eu-
clidean case in [8,24] and for the metric case in [7].

Definition 7 (Hyperspace of open subsets). Let (X, d, «) be a computable
metric space. We endow the hyperspace O(X) := {U C X : U open} with the
representation do(x), defined by do(x)(p) := U;ey Bla(ni), k;) for all sequences
p = 01(noko) 11 (n1k) 4107 (n2k2) 1 with n,, k; € N.

Those open subsets U C X which are computable points in O(X) are called
r.e. open. We close this section with one helpful proposition which states that
we can represent open subsets by preimages of continuous functions. This is a
direct consequence of results in [7] and an effective version of the statement that
open subsets of metric spaces coincide with the functional open subsets.

Proposition 8 (Functional open subsets). Let X be a computable metric
space. The map Z : C(X) — O(X), f — X\ f~1{0} is computable and admits a
computable right-inverse O(X) = C(X).

4 The Open Mapping Theorem

In this section we will study the effective content of the Open Mapping Theorem,
which we formulate first. The classical proof of this theorem can be found in [10]
or other textbooks on functional analysis.

Theorem 9 (Open Mapping Theorem). Let X, Y be Banach spaces. If
T : X — Y is a linear surjective and bounded operator, then T is open, i.e.
T(U) CY is open for any open U C X.

Whenever T': X — Y is an open operator, we can associate the function
OoT):0(X) —O)),U—T(U)

with it. Now we can ask for three different computable versions of the Open
Mapping Theorem. If T': X — Y is a linear computable and surjective operator,
does the following hold true:

(1) UC X r.e. open = T(U) CY r.e. open?
(2) O(T): O(X) — O(Y),U — T(U) is computable?
(3) T — O(T) is computable?

Since any computable function maps computable inputs to computable out-
puts, we can conclude (3)==(2)==-(1). In the following we will see that questions
(1) and (2) can be answered in the affirmative, while question (3) has to be an-
swered in the negative. The key tool for the positive results will be Theorem 10
on effective openness. It states that 7' : X — Y is computable, if and only if
O(T) : O(X) — O(Y) is computable, provided that T is a linear bounded and
and open operator and X, Y are computable normed spaces.

Theorem 10 (Effective openness). Let X,Y be computable normed spaces
and let T : X — 'Y be a linear and bounded operator. Then the following condi-
tions are equivalent:

(1) T:X —Y is open and computable,
(2) O(T): O(X) — OY),U — T(U) is well-defined and computable.

The proof of “(1)=(2)” can be performed in two steps. First one uses the
fact that T" is open and linear in order to prove that given x € X and an open
subset U C X, we can effectively find some radius r» > 0 such that B(Tz,r) C
T(U). This is the non-uniform part of the proof since it is based on the fact that
for any open T there exists some radius r’ > 0 with B(0,7’) C T'(B(0,1)) (such
an 1’ always exists, but it can not be effectively determined from T'). In the second
step, computability of T is exploited in order to prove that O(T) is computable.
Using the previous theorem we can directly conclude a computable version of the
Open Mapping Theorem as a corollary of the classical Open Mapping Theorem.

Corollary 11 (Computable Open Mapping Theorem). Let X,Y be
computable Banach spaces and let T : X — Y be a linear computable opera-
tor. If T is surjective, then T is open and O(T) : O(X) — O(Y) is computable.
Especially, T(U) CY is r.e. open for any r.e. open set U C X.

This version of the Open Mapping Theorem leaves open the question whether
the map T +— O(T) itself is computable. This question is answered negatively
by the following example.

Ezample 12. The mapping T +— O(T), defined for linear, bounded and bijective
operators T' : {3 — fp with ||T'|| =1, is not ([0z, — d¢,], do(e,))—continuous.

We leave the proof to the reader (see [4]). Although the mapping T'— O(T)
is discontinuous, we know by Theorem 10 that O(T) : O(fs) — O(¢3) is com-
putable whenever T : {5 — /{5 is computable. On the one hand, this guarantees
that T +— O(T) is not too discontinuous [3]. On the other hand, we have to use
sequences to construct a computable counterexample for the uniform version
of the Open Mapping Theorem. The proof is based on appropriately defined
diagonal matrices.

Proposition 13. There exists a computable sequence (Tp)nen in C(la,ls) of
linear computable and bijective operators Ty, : be — o such that (T, B(0,1))nen
is a sequence of r.e. open subsets of Lo which is not computable in O(Ls).

5 Banach’s Inverse Mapping Theorem

In this section we want to study computable versions of Banach’s Inverse Map-
ping Theorem. Again we start with a formulation of the classical theorem.

Theorem 14 (Banach’s Inverse Mapping Theorem). Let X, Y be Banach
spaces and let T : X — Y be a linear bounded operator. If T is bijective, then
T71:Y — X is bounded.

Similarly as in case of the Open Mapping Theorem we have two canonical
candidates for an effective version of this theorem: the non-uniform version (1)
and the uniform version (2), as formulated in the Introduction. Again we will
see that the non-uniform version admits a solution while the uniform version
does not. Analogously as we have used Theorem 10 on effective openness to
prove the computable Open Mapping Theorem 11, we will use Theorem 15 on
effective continuity to prove the computable version of Banach’s Inverse Mapping
Theorem. We sketch the first part of the proof which is based on Proposition 8.

Theorem 15 (Effective continuity). Let X,Y be computable metric spaces
and let T : X —Y be a function. Then the following conditions are equivalent:

(1) T: X =Y is computable,
(2) O(T71): 0(Y) - O(X),V — T=YV) is well-defined and computable.

Proof. “(1)=(2)” If T : X — Y is computable, then it is continuous and hence
O(T™1) is well-defined. Given a function f:Y — R such that V =Y\ f~1{0},
we obtain T=Y(V) = T=YY \ f~1{0}) = X \ (fT)~*{0}. Using Proposition 8
and the fact that composition o : C(Y,R) x C(X,Y) — C(X,R), (f,T) — foT is
computable (which can be proved by evaluation and type conversion), we obtain
that O(T~1) is computable. O

Now we note the fact that for Banach spaces X,Y and bijective linear op-
erators T : X — Y, the operation O(T 1), associated with T according to the
previous theorem, is the same as the operation O(S), associated with S = T—!
according to Theorem 10. Thus, we can directly conclude the following com-
putable version of the Inverse Mapping Theorem as a corollary of Theorem 15
and Theorem 10.

Corollary 16 (Computable Inverse Mapping Theorem). Let X, Y be com-
putable Banach spaces and let T : X — 'Y be a linear computable operator. If T
is bijective, then T~':Y — X is computable too.

In contrast to the Theorem 10 on effective openness, we can formulate a uni-
form version of the Theorem 15 on effective continuity: w : T+ O(T~1), defined
for all continuous T': X — Y, is ([0x — dy], [do(v) — do(x)])-computable and
its inverse w™! is computable in the corresponding sense too. Using this positive
result, applied to T~!, we can transfer our negative results on the Open Map-
ping Theorem to the Inverse Mapping Theorem. As a corollary of this fact and

Example 12 we obtain the following result.

Example 17. The inversion map T — T, defined for linear bounded and bi-
jective operators T : £o — {5 with ||T|| = 1, is not continuous.

This holds with respect to ([0¢, — 0¢,], [0e, — 0r,])—continuity, that is with
respect to the compact open topology. Correspondingly, we can construct a com-
putable counterexample for the uniform version of the Inverse Mapping Theorem.
As a corollary of Proposition 13 we obtain the following counterexample.

Corollary 18. There exists a computable sequence (T,)nen in C(Ls, l2) of linear
computable and bijective operators Ty, : ba — o, such that (T, 1),en is a sequence
of computable operators Tn_1 : Uy — Uy which is not computable in C(la, {s).

We can even assume that ||T,|| = 1 for all n € N. We close this section with
an application of the Computable Inverse Mapping Theorem 16 which shows that
any two comparable computable complete norms are computably equivalent.

Theorem 19. Let (X, || |]), (X, || |I') be computable Banach spaces and let 6,6’
be the corresponding Cauchy representations of X. If § < &' then 6 = 4.

Proof. It 6 < ¢', then the identity id : (X, || ||) — (X, || |") is (9, §')—computable.
Moreover, the identity is obviously linear and bijective. Thus, the inverse identity
id™ (X)) — (X)) s (67,8)-computable by the Computable Inverse
Mapping Theorem. Consequently, &' < 4. O

6 An Initial Value Problem

In this section we will discuss an application of the computable version of Ba-
nach’s Inverse Mapping Theorem to the initial value problem of ordinary linear
differential equations. Consider the linear differential equation with initial values

f: fi()z D (t) = y(t) with 29)(0) = a; for j =0,...,n— 1. (1)
1=0

Here, z,y : [0,1] — R are functions, f; : [0,1] — R are coefficient functions
with f, # 0 and ao, ..., a,—1 € R are initial values. It is known that for each
y € C[0,1] and all values ay, ..., a,_1 there is exactly one solution x € C™)][0, 1]
of this equation [12]. Given f;,a; and y, can we effectively find this solution?
The positive answer to this question can easily be deduced from the computable
Inverse Mapping Theorem 16.

Theorem 20 (Initial Value Problem). Let n > 1 be a natural number and let
foyeees fr 1 [0,1] = R be computable functions with f, # 0. The solution operator
L : C[0,1] x R™ — C(™[0,1] which maps each tuple (y, ag, ...,an_1) € C[0,1] x
R™ to the unique function x = L(y, ag, ..., an—1) which fulfills Equation (1), is
computable.
Proof. L' :C™[0,1] — C[0,1] x R™, x (Z?:o fix® 200, ..., J:("_l)(O)) is
obviously linear. Using the evaluation and type conversion property and the fact
that the i-th differentiation operator (™[0, 1] — C[0, 1], z + x(*) is computable
for i < n, one can easily prove that L~! is computable. By the computable
Inverse Mapping Theorem 16 it follows that L is computable too. ad
We obtain the following immediate corollary on computability of solutions
of ordinary linear differential equations.
Corollary 21. Let n > 1 and let y, fo,..., fn : [0,1] — R be computable func-
tions and let ag, ..., an—1 € R be computable real numbers. Then the unique func-
tion x € C™ |0, 1] which fulfills Equation (1) is a computable point in C(™][0,1].
Especially, z(©), ..., 2 :[0,1] — R are computable functions.

10

7 Conclusion

We have investigated the non-uniform and the uniform version of the inversion
problem for computable linear operators. The computable version of Banach’s
Inverse Mapping Theorem, Corollary 16, shows that the non-uniform version is
solvable while Example 17 proves by a topological argument and Corollary 18
proves by a computability argument that the uniform version is not solvable
(this is because any computable operation is continuous and maps computable
sequences to computable sequences, respectively).

The negative result corresponds to what is known in constructive analysis
[2]. However, our positive results on Banach’s Inverse Mapping Theorem cannot
be deduced from known positive results in constructive analysis [13,14] since
these theorems have stronger assumptions (such as “effective bijectivity”).

In a certain sense, the negative result seems to be in contrast with the so-
called Banach’s Inversion Stability Theorem [16]. However, this theorem states
that T +— T~! is continuous with respect to the operator norm topology on the
function space. In the infinite-dimensional case this topology is different from
the compact open topology and it is only the latter which reflects the meaning
of “programs”. Additionally, the operator norm topology is not separable in
these cases and hence it is not obvious how to handle it computationally [4].
Moreover, it is worth mentioning that in case of finite-dimensional spaces X,Y,
the uniform version of the inversion problem becomes solvable as well [4]. In this
case T +— T~! is computable (and continuous with respect to the compact open
topology).

Altogether we are in the somewhat surprising situation that in the general
case of infinite-dimensional Banach spaces X,Y any computable linear operator
T : X — Y has a computable inverse 7~! while there is no general algorithmic
procedure to transfer programs of T into programs of T~ '. As we have demon-
strated with Theorem 20, this leads to highly non-effective existence proofs of
algorithms: the proof of Theorem 20 shows that there exist an algorithm which
solves the corresponding initial value problem without a single hint how such an
algorithm could look like. Nevertheless, this is a meaningful insight, since only in
case of existence the search for a concrete algorithm is promising (of course, in
the special case of the initial value problem such concrete algorithms are known).

References

1. S. Banach and S. Mazur, Sur les fonctions calculables, Ann. Soc. Pol. de Math. 16
(1937) 223.

2. E. Bishop and D. S. Bridges, Constructive Analysis, Springer, Berlin 1985.

3. V. Brattka, Computable invariance, Theoret. Comp. Sci. 210 (1999) 3-20.

4. V. Brattka, Computability of Banach space principles, Informatik Berichte 286,
FernUniversitdt Hagen, Fachbereich Informatik, Hagen, June 2001.

5. V. Brattka, Computable versions of Baire’s category theorem, in: J. Sgall, A. Pultr,
and P. Kolman (eds.), Mathematical Foundations of Computer Science 2001, vol.
2136 of Lect. Not. Comp. Sci., Springer, Berlin 2001, 224-235.

11

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

V. Brattka, Computability over topological structures, in: S. B. Cooper and S. Gon-
charov (eds.), Computability and Models, Kluwer Academic Publishers, Dordrecht
(in preparation).

V. Brattka and G. Presser, Computability on subsets of metric spaces, Theoret.
Comp. Sci. (accepted for publication).

V. Brattka and K. Weihrauch, Computability on subsets of Euclidean space I:
Closed and compact subsets, Theoret. Comp. Sci. 219 (1999) 65-93.

X. Ge and A. Nerode, Effective content of the calculus of variations I: semi-
continuity and the chattering lemma, Ann. Pure Appl. Logic 78 (1996) 127-146.
C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentince-Hall,
Englewood Cliffs 1965.

A. Grzegorczyk, On the definitions of computable real continuous functions, Fund.
Math. 44 (1957) 61-71.

H. Heuser, Funktionalanalysis, B.G. Teubner, Stuttgart2. ed. 1986.

H. Ishihara, A constructive version of Banach’s inverse mapping theorem, New
Zealand J. Math. 23 (1994) 71-75.

H. Ishihara, Sequential continuity of linear mappings in constructive mathematics,
J. Univ. Comp. Sci. 3 (1997) 1250-1254.

K.-1. Ko, Complezity Theory of Real Functions, Birkhauser, Boston 1991.

S. Kutateladze, Fundamentals of Functional Analysis, Kluwer Academic Publish-
ers, Dordrecht 1996.

D. Lacombe, Quelques procédés de définition en topologie récursive, in: A. Heyting
(ed.), Constructivity in mathematics, North-Holland, Amsterdam 1959, 129-158.
G. Metakides, A. Nerode, and R. Shore, Recursive limits on the Hahn-Banach the-
orem, in: M. Rosenblatt (ed.), Errett Bishop: Reflections on Him and His Research,
vol. 39 of Contemporary Mathematics, American Mathematical Society, Providence
1985, 85-91.

M. B. Pour-El and J. I. Richards, Computability in Analysis and Physics, Springer,
Berlin 1989.

M. Schroder, Extended admissibility, Theoret. Comp. Sci. 284 (2002) 519-538.
M. Smyth, Topology, in: S. Abramsky, D. Gabbay, and T. Maibaum (eds.), Hand-
book of Logic in Computer Science, Volume 1, Clarendon Press, Oxford 1992, 641—
761.

A. M. Turing, On computable numbers, with an application to the “Entschei-
dungsproblem”, Proc. London Math. Soc. 42 (1936) 230-265.

M. Washihara, Computability and tempered distributions, Mathematica Japonica
50 (1999) 1-7.

K. Weihrauch, Computable Analysis, Springer, Berlin 2000.

K. Weihrauch and N. Zhong, Is the linear Schrédinger propagator Turing com-
putable?, in: J. Blanck, V. Brattka, and P. Hertling (eds.), Computability and
Complexity in Analysis, vol. 2064 of Lect. Not. Comp. Sci., Springer, Berlin 2001,
369-377.

K. Weihrauch and N. Zhong, Is wave propagation computable or can wave com-
puters beat the Turing machine?, Proc. London Math. Soc. 85 (2002) 312-332.
M. Yasugi, T. Mori, and Y. Tsujii, Effective properties of sets and functions in
metric spaces with computability structure, Theoret. Comp. Sci. 219 (1999) 467—
486.

N. Zhong, Computability structure of the Sobolev spaces and its applications,
Theoret. Comp. Sci. 219 (1999) 487-510.

12

Appendix: The Remaining Proofs

The next lemma will be used for the following proof of Theorem 10.

Lemma 22. Let (X,d,a) be a computable metric space. There exists a com-
putable multi-valued operation R :C X x O(X) = N such that for any open
UC X and x € U there exists some k € R(x,U) and B(x,k) C U holds for all
such k.

Proof. Given a sequence (n;, k;);en of natural numbers such that
o0 —_
U= U B(oz(ni), k?z)
i=0

and a sequence (m;);ey such that d(a(m;),a(m;)) < 277 for all i > j and
x :=lim;_ o a(m;) € U, there exist 4, j € N such that d(a(n;), a(m;))+277 < k;
and thus we can effectively find i, j, k € N such that d(a(n;), a(m;))+277+k < k;
and k > 0. Then d(z,y) < k implies

d(a(n:),y) < d(a(ni), o(my)) + d(a(m;), z) + d(z,y)
<d(a(ni),a(m;)) +277 +k
< ki

for all y € X and thus B(z, k) C B(a(n;), ki) C U.]

Proof of Theorem 10

We consider the computable normed spaces (X, || ||,e) and (Y,]| ||, ¢’) with
the dense sequences a := a, : N — X, 0 := @ : N — Y according to Defini-
tion 5. Since no confusion is to be expected, we will also write || || instead of || ||’.

“(1)=(2)” If T is open, then O(T) is well-defined and we have to prove that
O(T) is computable if T is computable. We separate the proof into two parts
(a) and (b). In (a) we use the fact that T is linear and open and in (b) we use
the fact that T is computable.

(a) We prove that there exists a computable operation R :C X x O(X) = N
such that for any open U C X and = € U there exists some k € R(x,U) and
B(Tx,k) € T(U) and k > 0 for all such k. Since T is open and linear, there
exists some rational r > 0 such that B(0,7) C T(B(0,1)). Given U € O(X) and
x € U we can effectively find some n € N with € := 7 > 0 such that B(z,e) CU
by Lemma 22 and some k € N with k = er. It follows by linearity of T

B(Tz,k)=¢ (B(O,)+ éTx) Ce (TB(O, 1)+ éTx) =TB(x,e) CT(U).

Thus, there exists a Turing machine M which computes a realization of R.

13

(b) Let M’ be a Turing machine which computes a (dx, dy)-realization of T. We
will construct a Turing machine M" which computes a (5o (x), do(y)) realization
of O(T). The set

W= {01™ 010 € 2% : 1 € Nand ||a(n;) — a(n;)|| < 2% fori < j <1}

is an r.e. subset of X* with dx(WX¥) = X. Let p € dom(do(x)) with U :=
do(x)(p)-

Now machine M” on input p searches systematically for some finite word
w = 010 Fio1m+l 017+10 € W such that machine M with input (w0%,p)
produces some (encoded) output m € N and M’ with input w0* some output
v, both after reading only w or some finite prefix of it, such that the following
holds: if 01ko+101%1+1 01%%10 is the longest prefix of v which ends with 0, then
2792 <m and a(n;) € U. Whenever machine M" finds such a word w, then it
writes 01¢k-8)+1 with k& = 27741 on the output tape.

If this happens, then B(Tx,m) C T(U) and ||y — Tx|| < 277 with z := a(n;)

and y := f(k;). Thus, ||z — y|| < k implies
|z =Tal| < llz—yll +[ly— Tl <k +277 <m

for all z € Y and thus B(B(k;),k) C B(Tz,m) C T(U). Hence, we obtain
dovy(q) €T (U) for the output g of M"”, provided that this output ¢ is infinite.

It remains to prove that M" on input p actually produces an infinite output
q and that T'(U) C do(y)(q). Thus, let y € T(U). Then there is some x € U with
Tx =y and some r € dom(dx) with dx(r) = = such that r = 01701+ |
has infinitely many prefices in W and «(n;) € U for all i; especially there is
one such prefix w’ € W of r such that M on input (w'0“,p) stops with out-
put m € N while reading w’ or some finite prefix of it and there is some prefix
w € W of r which is longer than w’ such that M’ on input w0* writes some out-
put 01Fo+101k1+1 01%+10 with 2772 < 7 while reading w or some finite prefix
of it. Finally, M" will find such a word w and write 01i-#)+1 with k& = 2-7+1
on the output tape. We obtain y € B(B(k;), k) since ||8(k;) —y|| < 277 < k.
Moreover, M’ will find infinitely many such words w and produce an infinite
output ¢ with T'(U) C do(y)-

“(2)=(1)” Now let O(T) be well-defined and computable and let M be a
Turing machine which computes a realization of O(T). Then T is open since
O(T) is well-defined. Since T is bounded, there exists a rational bound s > 0
such that ||Tz|| < s||z|| for all z € X and some j € N such that 27 > s. We
construct a Turing machine M’ which computes a (dx,dy)-realization of T.
Given some input p = 0170t101m+10172+1(0... with 2 := Jx(p), machine M’
works in steps ¢ = 0,1,2,... as follows: in step ¢ machine M’ starts machine
M with input g = 01{iti+2 k101 (itsir2.ki)+10] (nivit2.ki) 10 where k; =
279772 and simulates M until it writes the first word 01¢*¥)+10. Then M’
writes 01**! on its output tape and continues with the next step i + 1.

Since do(x)(q) = B(a(nitjy2), ki), M produces an output r with

Sov)(r) = O(T)(o(x)(q)) = TB(a(niyji2), ki)-

14

Thus, for any subword 017+! which is written by M "in step ¢ on | its output tape,
we obtain §(n) € TB(a(nyj+2), ki). Since || — a(nitj+2)|| < ki, it follows

18(n) = Tx|| < ||8(n) = Ta(niyje2)l| + || Ta(niyji2) — Ta|| < 2sk; <2771
and hence dy (t) = Tx holds for the infinite output ¢ of M’. O

The next lemma will be used for the following proof of Proposition 13.

Lemma 23. There exists a computable sequence (b)nen of positive right-compu-
table real numbers such that for any computable function f : N — N there exists
some i € N such that 2=70) > p,.

Proof. We use some total Goédel numbering ¢ : N — P of the set of partial
computable functions P := {f :C N — N : f computable} to define

b 275 1if o, (n) =k
" 1 if ¢, (n) is undefined

for all n,k € N. Then (b,)nen is a computable sequence of positive right-
computable real numbers. Now let f : N — N be some total computable
function. Then there exists some ¢ € N such that ¢; = f and we obtain
2=f() > 9=ei(-1 — .. 0O

Proof of Proposition 13

We sketch the proof. For a complete version see [4]. Given the computable se-
quence (by,)nen from Lemma 23 we can effectively determine a sequence (T},)nen
of diagonal operator T}, : {5 — {5 as follows: for any b,, we effectively determine a
decreasing sequence (ank)gen of rational numbers a,,; € @ such that a,0 = 1 and
by, = infren ank. Now we define T}, : €y — fo by Ty, (k) ren := (ankxr)ren for all
(zk)ken € fo. Given some z = (zp)ren and a precision m € N we can effectively
find some j € N and numbers qo, ..., ¢; € Qr such that || >°7_ gie; —z||2 < 27™.
Since ||T,,|| = 1 as one can easily see, it follows

j j
T, (Z Qiei> — Ta() > qiei—x
i=0 i=0

By linearity of T;, we obtain T,,(37_qqie;) = Y1 o@iTn(e:)) = >1_oqiani
and thus we can evaluate T, effectively up to any given precision m. Using
type conversion we can prove that given the sequence (by,)necn, we can actu-
ally find the sequence (T,)nen effectively. Thus, since (by)nen is computable,
it follows that (T},)nen is a computable sequence in C({3,¢2). Now, if the se-
quence (T, B(0,1))neny would be computable, then the computable operation
R :C Uy x O(f3) = N from Lemma 22 would yield a computable sequence
(rn)nen of rationals with r, € R(0,7T,B(0,1)) such that 0 < r,, < b,. But this
contradicts Lemma 23. |

< [Tl - <27

2 2

15

Proof of Theorem 15

“(2)=(1)” We consider the computable metric spaces (X,d,«) and (Y, d’, 3).
We note that 7T is continuous, if O(T~!) is well-defined. Given a Turing machine
M which computes a realization of O(T~1), we construct a Turing machine M’
which computes a realization of T. The machine M’ with input p € dom(dx)
works in steps k = 0,1,2, ... as follows. In step k& machine M’ simultaneously
tests all values n € N until some value is found with the following property:
machine M with input 01¢%m™+101{mm)+101(nm)+10 with 77 = 2% produces
an output with subword 017410 such that x = dx (p) € B((i), 7). As soon as
such a subword is found, M’ writes 01”*! on the output tape.

If this happens, i.e. if M’ writes 01”1 on its output tape, then we obtain
Tx € B(B(n),27%) since + € B(a(i),j) € T~ (B(B(n),m)). Moreover, M’
actually produces an infinite output ¢, since for any k& € IN there is some n € N
such that Tz € B(8(n),27%) and thus = € T~1(B(8(n),27%)) and consequently
M on input 01(m+101¢(m)+10 has to produce some output with subword
019)+10 and z € B(a(i), 7). It follows dy (¢) = T. O

16

