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Abstract. Generalizing the notion of a recursively enumerable (r.e.) set
to sets of real numbers and other metric spaces is an important topic in
computable analysis (which is the Turing machine based theory of com-
putable real number functions). A closed subset of a computable metric
space is called r.e. closed, if all open rational balls which intersect the set
can be effectively enumerated and it is called effectively separable, if it
contains a dense computable sequence. Both notions are closely related
and in case of Euclidean space (and complete computable metric spaces
in general) they actually coincide. Especially, both notions are gener-
alizations of the classical notion of an r.e. subset of natural numbers.
However, in case of incomplete metric spaces these notions are distinct.
We use the immune set of random natural numbers to construct a recur-
sive immune “tree” which shows that there exists an r.e. closed subset
of some incomplete subspace of Cantor space which is not effectively
separable. Finally, we transfer this example to the incomplete space of
rational numbers (considered as a subspace of Euclidean space).

Keywords: computable analysis, r.e. closed sets, random numbers, Kol-
mogorov complexity, immune sets.

1 Introduction

In classical recursion theory the notions of a recursively enumerable (r.e.) and
a recursive set play an essential role [6]. One interesting topic of research in
computable analysis (which is the theory of real number functions which can
be computed by Turing machines) is concerned with the generalization of these
notions to Euclidean space and other types of spaces [9]. In the case of com-
putable metric spaces some central notions of effectivity for closed subsets and
their mutual relationship can be visualized as shown in Figure 1. The displayed
results have been obtained in [3] from a very uniform point of view and each
arrow in the diagram does not only indicate an implication but an effective re-
ducibility. Below, we will precisely define the notions which are relevant to the
present paper. In case of Euclidean space (and other computable metric spaces
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which roughly speaking have to be “effectively locally compact”) the vertical ar-
rows can be reversed and thus the three horizontal layers of the diagram collapse
[4]. However, a number of examples have been presented in [3] which prove that
some of these notions have to be distinguished in the general case of computable
metric spaces.
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Fig. 1. Notions of effectivity for closed subsets of computable metric spaces

In this paper we will deal with another example of this type which has already
been announced but not proved in [3] and which shows that there are naturally
defined computable metric spaces and examples of closed subsets which fulfill
all displayed effectivity notions besides effective separability. The results of [3]
imply that such spaces and sets necessarily have to be incomplete (since recursive
enumerability implies effective separability in case of complete spaces or sets).
Even the space of rational numbers (endowed with subtopology of the Euclidean
metric) admits subsets of the mentioned type. A glance at Figure 1 shows that
it suffices to show that there exists a strongly recursive closed subset which is
not effectively separable to prove the claim.

In the following Section 2 we define some basic concepts from computable
analysis and we introduce the relevant notions of effectivity for closed subsets.
In Section 3 we use the set of natural random numbers to construct a recursive
subset of Cantor space. This “tree” is our basic example of a strongly recursive
closed subset (of some incomplete subspace of Cantor space) which is not effec-
tively separable. Actually, we can prove even a stronger result which shows that
the constructed tree is immune in the sense that it does not include an infinite
computable sequence. In Section 4 we will transfer our example to the space of
rational numbers.

2 Preliminaries from computable analysis

In this section we introduce some basic concepts from computable analysis; for
details we refer the reader to [9]. We start with computable metric spaces.

Definition 1 (Computable metric space). We will call a triple (X, d, α) a
computable metric space, if

1. d : X × X → R is a metric on X,
2. α : N→ X is dense in X, i.e. the closure of range(α) is equal to X,
3. d ◦ (α × α) : N2 → R is a computable (double) sequence of real numbers.
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Here we assume that the reader is familiar with the notion of a computable
sequence of real numbers in sense of computable analysis (cf. for instance [7, 5, 10,
9]). We mention some standard examples of computable metric spaces which we
will use in the following. Therefore, we first introduce some technical notations.
By {0, 1}∗ we denote the set of finite words over the alphabet {0, 1} and by
C := {0, 1}ω we denote the set of infinite binary sequences (and occasionally we
assume {0, 1}ω ⊆ NN). By wp we denote the concatenation of a word w with a
sequence (or a finite word) p, and the prefix order will be denoted by “v”, i.e.
w v p holds, whenever w is a prefix of p. By 0ω we denote the zero sequence
and by Z := {0, 1}∗0ω the set of all binary sequences which are eventually
zero. Similarly, we denote by w{0, 1}ω the set of sequences with prefix w. By
〈n, k〉 := 1/2(n + k)(n + k + 1) + k we denote the Cantor pairing of n, k ∈ N
which can be extended inductively to arbitrary finite tuples and we define 0̂ := 0
and [n + 1 := 1 for all n ∈ N.

Example 2 (Computable metric spaces).

1. (R, dR, αR) with the Euclidean metric

dR(x, y) := |x− y|
and some standard enumeration αR〈i, j, k〉 := i−j

k+1 of the set Q of rational
numbers, is a computable metric space.

2. (Q, dQ, αQ) with the restriction dQof dRto Q× Q in the source and the
restriction αQof αRto Q in the target, is a computable metric space.

3. ({0, 1}ω, dC, αC) with the Cantor metric

dC(p, q) :=
{

2−min{i∈N: p(i) 6=q(i)} if p 6= q
0 else

and some enumeration αC〈k, 〈n1, ..., nk〉〉 := n̂1...n̂k 0ω of Z := {0, 1}∗0ω is
a computable metric space.

4. (Z, dZ , αZ) with the restriction dZ of dC to Z × Z in the source and the
restriction αZ of αC to Z in the target, is a computable metric space.

The proofs that these spaces are actually computable metric spaces are
straightforward (cf. [2, 8, 9]). In the following we will refer to these spaces sim-
ply by writing R,Q, C, and Z, respectively. The spaces Q and Z are typical
examples of incomplete computable metric spaces and Rand C are their natural
completions, respectively.

In computable analysis a function f :⊆ X → Y is called computable, if
there exists a Turing machine which transfers each infinite sequence p ∈ Σω

(over some alphabet Σ) that represents some input x ∈ X into some sequence
q ∈ Σω which represents the result f(x). Of course, such a Turing machine has
to compute infinitely long, but in the long run each infinite input sequence is
transformed into an appropriate output sequence. Here and in the following,
the inclusion symbol “⊆” is used to denote functions which are possibly partial.
It is a reasonable restriction that only Turing machines with one-way output

3



tape are allowed (because otherwise the output after some finite time would be
useless, since it could be changed by the machine later on). More formally, a
representation of a set X is a surjective mapping δ :⊆ Σω → X. Using this
notion we can define computable functions precisely.

Definition 3 (Computable functions). Let δ and δ′ be representations of X
and Y , respectively. A function f :⊆ X → Y is called (δ, δ′)–computable, if there
exists a Turing machine M such that fδ(p) = δ′FM(p) for all p ∈ dom(fδ).

Here, FM :⊆ Σω → Σω denotes the function computed by Turing machine
M . The diagram in Figure 2 illustrates the situation.

Σω -

X -

FM

f

?

δ′δ

Σω

Y

?

Fig. 2. Computability with respect to representations

With each computable metric space (X, d, α) we can canonically associate
its Cauchy representation δX , where δX(01n0+101n1+101n2+1...) = limi→∞ α(ni)
for all ni ∈ N such that d(α(ni), α(nj)) ≤ 2−j for all i > j. Roughly speaking,
δX(p) = x, if p encodes a Cauchy sequence in range(α) which rapidly converges
to x. Occasionally, we will also use some standard representation δNof the nat-
ural numbers N := {0, 1, 2, ...}. In the following we will say for short that a
function on N,Q,R,Z and C is computable, if it is computable with respect to
the corresponding representation δN, δQ, δR, δZ and δC , respectively. The class of
functions f : Σω → Σω over the alphabet Σ := {0, 1} which are computable by
Turing machines coincides with the class of computable functions with respect
to δC . Thus, the introduced notions are consistent.

A point x ∈ X of a recursive metric space (X, d, α) with Cauchy repre-
sentation δX is called computable, if there exists some computable p such that
δX(p) = x. A sequence (xn)n∈Nin X is called computable, if the corresponding
function f : N→ X with f(n) := xn is (δN, δX)–computable.

We close this section with a definition of those effectivity notions for subsets
which will be used throughout this paper. We will use the notation B(x, ε) :=
{y ∈ X : d(x, y) < ε} for the open ball with center x and radius ε and analogously
we denote by B(x, ε) := {y ∈ X : d(x, y) ≤ ε} the corresponding closed ball. In
general, A denotes the topological closure of a subset A ⊆ X. Moreover, we use
the abbreviation n := αR(n) for the rational numbered by n ∈ N .
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Definition 4 (Recursively enumerable closed subsets). Let (X, d, α) be
a computable metric space and let A ⊆ X be a closed subset.

1. A is called r.e. closed, if the set {〈n, k〉 ∈ N : A ∩ B(α(n), k) 6= ∅} is r.e.
2. A is called strongly co-r.e. closed, if the set {〈n, k〉 ∈ N : A∩B(α(n), k) = ∅}

is r.e.
3. A is called strongly recursive closed, if A is r.e., as well as strongly co-r.e.

closed.

Our aim is to construct a strongly recursive closed subset which is not effec-
tively separable. Therefore we define effective separability.

Definition 5 (Effective separability). Let (X, d, α) be a computable metric
space and let A ⊆ X be a subset. Then A is called effectively separable, if there
exists a computable sequence f : N→ X such that range(f) = {f(n) : n ∈ N}
is dense in A.

3 An immune recursive tree

In this section we construct a subset T ⊆ {0, 1}ω with some interesting proper-
ties. Using a non-standard but intuitive terminology, we will call such subsets
trees for short (even if T is not closed). The tree T that we will construct is re-
cursive in the sense that we can effectively decide which nodes belong to a path
of the tree. Especially, T is a strongly recursive closed subset of Z = {0, 1}∗0ω.
Since T ⊆ Z, all paths of T are computable, but T has the property that there
is no algorithm which, given a node of T as input, finds some path in T which
goes through the given node. This implies that T is not effectively separable.
And more than this, we will even prove that T does not contain an infinite
computable sequence.

For the construction of T we will use some notions from recursion theory [6].
Let ϕ : N → P denote some admissible Gödel numbering of the set of partial
computable functions P := {f :⊆ N→ N : f computable}. Then the Kolmogorov
complexity of a number n ∈ N is defined by K(n) := min{i ∈ N : ϕi(0) = n},
which is the “shortest program” that can produce n. Without loss of generality,
we can assume that K(ϕi ◦ ϕj(n)) is bounded by a term linear in i, j, n, i.e. we
can assume that there exists some constant c ∈ N such that for all i, j, n ∈ N
with n ∈ dom(ϕi ◦ ϕj)

K(ϕi ◦ ϕj(n)) ≤ c(i + 1)(j + 1)(n + 1) + c.

By L := {n ∈ N : K(n) < n} we denote the set of nonrandom or lawful numbers.
Intuitively, a number n ∈ N is random, i.e. n 6∈ L, if n is its own shortest
description (thus there is no algorithm i, smaller than n itself, which produces
ϕi(0) = n). Without loss of generality, we assume that 0, 1 ∈ N \ L are random
numbers. It is known that the set of nonrandom numbers L is simple, i.e. it is r.e.
and its complement is infinite but does not contain any infinite r.e. subset. Thus,
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the set of random numbers N \ L is immune: no algorithm can produce more
than finitely many random numbers (cf. [6] for the definition and properties of
random numbers). Now we use the set L of nonrandom numbers to construct a
tree T .

Definition 6 (The tree T ). Let s : N→ N be some computable function which
enumerates the set of nonrandom numbers, i.e. range(s) = L and let t :⊆ N→ N
be defined by t(k) := min{m ∈ N : s(m) = k}. Now let T ⊆ Z = {0, 1}∗0ω be
the set which contains all sequences

p = 1n0+10t(k0)+11n1+10t(k1)+11n2+10t(k2)+1...1nj−1+10t(kj−1)+11nj+10ω

such that j ∈ N, n0, ..., nj ∈ N, k0, ..., kj−1 ∈ L and kj ∈ N\L and the equations{
k0 = n0

ki+1 = k2
i + ni+1

hold for all i = 0, ..., j − 1.

By construction T consists only of sequences which are eventually zero. More
than this, T is even closed in Z but it is not complete and hence not closed in
{0, 1}ω. The closure T of T contains sequences with infinitely many ones.
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Fig. 3. A part of tree T with a nonrandom number n = s(1) ∈ L

The intuition of the construction of T is as follows (cf. Figure 3). Let us
consider T as a subset of the full binary tree {0, 1}ω and consider the rightmost
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path of ones in this tree: we enumerate consecutive nodes on this path with
natural numbers 0, 1, 2, ... and so on. The path p through node n which continues
to the left with zeroes, i.e. p = 1n+10ω, belongs to T , if and only if n is a random
number, i.e. n ∈ N \ L. With any node i of path p we could associate a test
which tries to prove that n is nonrandom, i.e. it is checked whether n=s(i)? If
the test fails, then we proceed within the next step and check n=s(i+1)? If n is
random, we follow the path p in this way until infinity. If n is nonrandom, then
some test n = s(i) will succeed and the consecutive sequence of zeroes is stopped
at this node i = t(n). In this case the path p is continued to the right, i.e. it has
1n+10t(n)+11 as prefix. Again we associate numbers n2, n2+1, n2+2, ... and so on
with the nodes of the following rightmost path and we continue in this subtree
as described before. Actually, this intuitive description of the construction of T
leads to the following result.

Proposition 7. The set P := {w ∈ {0, 1}∗ : (∃p ∈ T ) w v p} is recursive.

Proof. Let w ∈ {0, 1}∗ be some word. In order to describe how one can decide
whether w ∈ P holds, we distinguish four cases.
1. Case: w = 1n0+10m0+11n1+10m1+1...1nj+10mj+1, n0, ..., nj, m0, ..., mj ∈ N.
We compute k0 := n0, ki+1 := k2

i + ni+1 for i = 0, ..., j − 1 and we verify
s(mi) = ki for i = 0, ..., j−1 and s(m) 6= ki for m < mi and i = 0, ..., j. If one of
these conditions is violated, then obviously w 6∈ P . If all conditions are fulfilled,
then w is a prefix of some p ∈ T : either kj ∈ N\L is random and hence w0ω ∈ T
or otherwise t(kj) ≥ mj exists and there is some random number among the
numbers k2

j , k
2
j + 1, k2

j +2, k2
j +3, ..., say k2

j + l, such that w0t(kj)−mj 1l+10ω ∈ T
in this case.
2. Case: w = 1n0+10m0+11n1+10m1+1...1nj−1+10mj−1+11nj+1 with n0, ..., nj,
m0, ..., mj−1 ∈ N.
We compute k0 := n0, ki+1 := k2

i + ni+1 for i = 0, ..., j − 2 and we verify
s(mi) = ki and s(m) 6= ki for m < mi and i = 0, ..., j − 1. If one of these
conditions is violated, then obviously w 6∈ P . If all conditions are fulfilled, then
w is a prefix of some p ∈ T : there is some random number among the numbers
k2

j−1 +nj , k
2
j−1 +nj +1, k2

j−1 +nj +2, ..., say k2
j−1 +nj + l, such that w1l0ω ∈ T

in this case.
3. Case: w starts with a zero. In this case obviously w 6∈ P .
4. Case: w is the empty word. In this case obviously w ∈ P . 2

Since open balls and closed balls in {0, 1}ω are both of the form w{0, 1}ω

with w ∈ {0, 1}∗ and

P = {w ∈ {0, 1}∗ : w{0, 1}ω ∩ T 6= ∅} = {w ∈ {0, 1}∗ : w{0, 1}ω ∩ T 6= ∅},

we obtain the following corollary.

Corollary 8. T is a strongly recursive closed subset of Z and its closure T is a
strongly recursive closed subset of {0, 1}ω.
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Although the tree T is recursive there is no computable strategy which de-
termines a path through a given node. In order to prove this result we start with
a lemma which shows how the square terms in the definition of the tree T can
be used.

Lemma 9. Let f :⊆ N→ N be a computable function with f〈n, 0〉 ≥ n for all
n ∈ N and let g :⊆ N→ N be defined by{

g〈n, 0〉 := f〈n, 0〉
g〈n, k + 1〉 := (g〈n, k〉)2 + f〈n, k + 1〉

Then g is computable and the sequence g〈n, 1〉, g〈n, 2〉, g〈n, 3〉... is either finite or
all values are defined. In both cases the sequence does contain no random number
for almost all fixed values n ∈ N.

Proof. Obviously, g is a computable function since f is computable. Let i ∈ N
be such that ϕi = g. Then there is some constant c ∈ N such that

K(g〈n, k〉) ≤ c(i + 1)(n + 1)(k + 1) + c

holds for all n, k ∈ N such that g〈n, k〉 exists. On the other hand, g〈n, k〉 ≥ n(2k)

for all values k ∈ N such that g〈n, k〉 exists. Thus, if n is sufficiently large and
itself nonrandom, then g〈n, k〉 > K(g〈n, k〉) follows for all k > 0 such that g〈n, k〉
exists. Thus, for almost all n ∈ N the sequence g〈n, 1〉, g〈n, 2〉, g〈n, 3〉... does not
contain a random value. 2

With the help of this lemma we can prove the main result of this section.

Theorem 10. T is a strongly recursive closed subset of Z which is not effectively
separable.

Proof. It has already been proved in Corollary 8 that T is strongly recursive
closed. It remains to show that T is not effectively separable. Let us assume
that there is a computable sequence (pi)i∈Nin {0, 1}∗0ω such that {pi : i ∈ N}
is dense in T . Then there exists a computable function h : N → N such that
1n+10 v ph(n), i.e. h finds a path associated with node n. Let us define a function
f :⊆ N→ N by f〈n, 0〉 := n and f〈n, j + 1〉 = k, if and only if

(∃n1, ..., nj, m0, ..., mj ∈ N) 1n+10m0+11n1+10m1+1...1nj+10mj+11k+10 v ph(n)

for all n, j, k ∈ N. Then f is computable too. We mention that f〈n, j〉 is un-
defined for all random numbers n ∈ N \ L and j > 0 and it is defined for all
nonrandom numbers n ∈ L and a certain initial segment j = 0, ..., ι. Then the
function g :⊆ N→ N, defined according to Lemma 9, is computable as well and
there exists some sufficiently large nonrandom n ∈ L such that the sequence
g〈n, 0〉, g〈n, 1〉, g〈n, 2〉... does not contain a random number. For this fixed n
there exists some ι such that

ph(n) = 1f〈n,0〉+10tg〈n,0〉+1...1f〈n,ι−1〉+10tg〈n,ι−1〉+11f〈n,ι〉+10ω ∈ T

and thus g〈n, ι〉 ∈ N \L is random by definition of T . But this is a contradiction
to the choice of n! 2
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Now we can use the same method to prove even a stronger result which shows
that there is no infinite computable sequence in T at all. In the following we will
call a closed subset A ⊆ X of a computable metric space X immune, if there
exists no computable sequence f : N→ X such that range(f) = {f(n) : n ∈ N}
is infinite and included in A. The proof of the following result is a refined version
of the previous proof and it is also based on Lemma 9. In the previous proof
density allowed to construct a function f starting from the rightmost path of T .
Now we will construct a similar function f but starting deeper within the tree.
We will use the fact that N \ L is immune in order to prove that any infinite
sequence in the tree goes arbitrary deep into the tree.

Theorem 11. T is an immune set.

Proof. For each

p = 1n0+10t(k0)+11n1+10t(k1)+11n2+10t(k2)+1...1nj−1+10t(kj−1)+11nj+10ω ∈ T

let ζ(p) := kj := k2
j−1 + nj and µ(p) := j. Thus, ζ(p) is “the random number”

encoded by p and µ(p) + 1 is “the depth” of p, i.e. the number of occurrences
of “10” in p. Let us consider ζ :⊆ {0, 1}ω → N as function. Obviously, ζ with
dom(ζ) := {p : µ(p) = n} is computable for any fixed n ∈ N.

Let us assume that (pi)i∈Nis a computable sequence in {0, 1}ω such that the
range {pi : i ∈ N} is infinite and included in T .

We prove by induction on n that for all n ∈ N there are infinitely many
different sequences pi with µ(pi) ≥ n. This is obvious for n = 0. Let us assume
that we have proved the claim for n. We will show that the assumption that
there are only finitely many pi with µ(pi) ≥ n + 1 leads to a contradiction.
By induction hypothesis and this assumption there are infinitely many pi with
µ(pi) = n. Since {pi : µ(pi) ≥ n + 1} is finite, it follows that the set of indices
{i ∈ N : µ(pi) < n+1} is r.e. On the other hand, {i ∈ N : µ(pi) ≥ n} is r.e. as well
and thus M := {i ∈ N : µ(pi) = n} is r.e. too. Moreover, i 7→ ζ(pi) is computable
on M and thus Z := {ζ(pi) : i ∈ M} is r.e. too. Since {pi : µ(pi) = n} is infinite,
it follows that the set of numbers k ∈ N such that 1k is a subword of some pi

with µ(pi) = n, has to be infinite too and since ζ(pi) ≥ k − 1 in this case, it
follows that Z is infinite as well. But this is a contradiction since Z ⊆ N\L and
N \ L is immune. Thus, there have to be infinitely many pi with µ(pi) ≥ n + 1.
This finishes the induction.

Since 0, 1 ∈ N \ L are random, we obtain µ(p) ≥ n =⇒ ζ(p) ≥ 2(2n) for
all n ≥ 1. Thus, as a consequence of the previous claim, for each n ∈ N there
are infinitely many pi with ζ(pi) ≥ n. We can conclude that there exist total
computable functions γ, σ, h : N→ N such that for all n ∈ N and i = γ(n) there
exist n0, ..., ni, m0, ..., mi−1 ∈ N such that

σ(n) = s(mi−1)2 + ni > n and 1n0+10m0+11n1+1...0mi−1+11ni+10 v ph(n).

Thus h(n) finds a path ph(n) which on depth γ(n) + 1 “tries to prove” that the
value σ(n) > n is nonrandom. Now let us define a function f :⊆ N → N by

9



f〈n, 0〉 := σ(n) and f〈n, j + 1〉 = k, if and only if there exist n0, ..., nγ(n)+j,
m0, ..., mγ(n)+j ∈ N such that

1n0+10m0+1...1nγ(n)+10mγ(n)+1...1nγ(n)+j+10mγ(n)+j+11k+10 v ph(n)

for all n, j, k ∈ N. Then f is computable too. We mention that f〈n, j〉 is undefined
for all n ∈ N such that σ(n) ∈ N \ L is random and j > 0 and it is defined
for all n ∈ N such that σ(n) ∈ L is nonrandom and a certain initial segment
j = 0, ..., ι. Since the set N \ L is immune, it follows that σ(n) ∈ L for almost
all n ∈ N. Altogether, the function g :⊆ N→ N, defined according to Lemma 9,
is computable and there exists some sufficiently large n ∈ N such that σ(n) ∈ L
and such that the sequence g〈n, 0〉, g〈n, 1〉, g〈n, 2〉... does not contain a random
number. For this fixed n there exists some ι > 0 and n0, ..., nγ(n), m0, ..., mγ(n)−1

such that

ph(n) = 1n0+10m0+1...1nγ(n)+10tg〈n,0〉+11f〈n,1〉+10tg〈n,1〉+1...

1f〈n,ι−1〉+10tg〈n,ι−1〉+11f〈n,ι〉+10ω ∈ T

and thus g〈n, ι〉 ∈ N \L is random by definition of T . But this is a contradiction
to the choice of n! 2

If we generalize the notion of constructively immune sets [6] to subsets of
computable metric spaces appropriately, then Theorem 11 together with Propo-
sition 7 imply that T is even a constructively immune subset of Z.

4 The rational case

The aim of this section is to transfer the tree T and its properties from Cantor
space to Euclidean space. The main idea is to use the transformation which is
given in the following lemma.

Lemma 12. The function Γ : {0, 1}ω → R, p 7→ ∑∞
i=0 2−2i

p(i) has the follow-
ing properties:

1. Γ is a computable embedding, i.e. Γ is injective and Γ as well as its partial
inverse Γ−1 are computable.

2. Γ preserves “the dense subset”, i.e. Γ (Z) ⊆ Q and Γ ({0, 1}ω \ Z) ⊆R\Q.

The stated properties can easily be verified. Now we formulate a proposition
which shows that Γ also preserves several effectivity properties of sets.

Proposition 13. Let A ⊆ {0, 1}ω be a subset. Then the following holds:

1. A immune ⇐⇒ Γ (A) immune.
2. A effectively separable in {0, 1}ω ⇐⇒ Γ (A) effectively separable in R.
3. A r.e. closed in {0, 1}ω =⇒ Γ (A) r.e. closed in R.
4. A strongly co-r.e. closed in {0, 1}ω =⇒ Γ (A) strongly co-r.e. closed in R.
5. A strongly rec. closed in {0, 1}ω =⇒ Γ (A) strongly rec. closed in R.
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Proof. 1. and 2. immediately follow from the fact that Γ is a computable em-
bedding.
3. Let A be an r.e. closed subset of {0, 1}ω. Then the set

P := {w ∈ {0, 1}∗ : w{0, 1}ω ∩ A 6= ∅}
is r.e. For all a, b ∈ Q we denote by (a, b) the corresponding open interval and
we obtain

(a, b)∩ Γ (A) 6= ∅ ⇐⇒ Γ−1(a, b) ∩ A 6= ∅
⇐⇒ (∃w ∈ P ) w{0, 1}ω ⊆ Γ−1(a, b)

Using a theorem on effective continuity (e.g. Theorem 6.2 in [1]) we can conclude
that Γ (A) is r.e. closed in R.
4. Let A be a strongly co-r.e. closed subset of {0, 1}ω. Then {0, 1}∗ \ P , with
P defined as in 3., is r.e. For all a, b ∈ Q we denote by [a, b] the corresponding
closed interval and we obtain

[a, b]∩ Γ (A) = ∅ ⇐⇒ Γ−1[a, b] ∩ A = ∅
⇐⇒ (∃ open U ⊆ {0, 1}ω) Γ−1[a, b] ⊆ U and U ∩ A = ∅

⇐⇒ (∃w1, ..., wn ∈ {0, 1}∗ \ P ) Γ−1[a, b] ⊆
n⋃

i=1

wi{0, 1}ω.

Here, the last equivalence holds since Γ−1[a, b] is compact (as a closed subset
of the compact Cantor space {0, 1}ω). Using a theorem on effective continuity
(Theorem 6.2 in [1]) and the effective Heine-Borel Theorem (Theorem 4.10 (2)
in [3]), we can conclude that Γ (A) is strongly co-r.e. closed in R.
5. is a direct consequence of 3. and 4. 2

Now we formulate a lemma which allows to transfer effectivity properties to
subspaces and back.

Lemma 14. Let A ⊆ Q be a subset which is closed in Q and let A denote the
closure of A in R. Then

1. A is r.e. closed in R ⇐⇒ A is r.e. closed in Q.
2. A is strongly co-r.e. closed in R ⇐⇒ A is strongly co-r.e. closed in Q.
3. A is strongly recursive closed in R ⇐⇒ A is strongly recursive closed in Q.
4. A is effectively separable in R ⇐⇒ A is effectively separable in Q.

Proof. 1. For all a, b ∈ Q we obtain (a, b) ∩ A 6= ∅ ⇐⇒ (a, b) ∩ A 6= ∅, since
(a, b) is open.
2. For all a, b ∈ Q we obtain [a, b]∩ A = ∅ ⇐⇒ [a, b]∩ A = ∅. Here, on the one
hand, “⇐=” follows since A ⊆ A. And, on the other hand, “=⇒” follows since
[a, b]∩A = ∅ implies [a, b]∩A ⊆ ∂[a, b] = {a, b} ⊆ Q and thus [a, b]∩A = ∅ since
A is closed in Q.
3. Is a direct consequence of 1. and 2.
4. A sequence f : N → Q is dense in A and computable with respect to Q, if
and only if it is dense in A and computable with respect to R (considered as a
sequence f : N→ R). 2
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It should be mentioned that our results show that direction “=⇒” of 4. does
not hold if A is replaced by its closure A on the left-hand side. Finally, we are
prepared to prove our main result on Γ (T ) as a subset of Q.

Theorem 15. Γ (T ) is a strongly recursive closed subset of Q, which is immune
and thus not effectively separable.

Proof. On the one hand, T is strongly recursive closed in {0, 1}ω by Corollary
8 and thus Γ (T ) = Γ (T) is strongly recursive closed in R by Proposition 13.5.
Hence Γ (T ) is strongly recursive closed inQ by Lemma 14.3. since Γ (T ) is closed
in Q. On the other hand, T is immune by Theorem 11 and thus Γ (T ) is immune
by Proposition 13.1. 2

One could also directly use Theorem 10, Proposition 13.2. and Lemma 14.4.
to conclude that Γ (T ) is not effectively separable in Q (without using Theorem
11). The reader should notice that immunity in Theorem 15 means that there
is no infinite computable sequence of reals contained in Γ (T ). This implies the
weaker statement that there is no infinite sequence of rationals included in Γ (T ),
which is computable in the classical discrete sense.
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Science. Birkhäuser, Boston, 1991.

6. Piergiorgio Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam, 1989.

7. Marian B. Pour-El and J. Ian Richards. Computability in Analysis and Physics.
Perspectives in Mathematical Logic. Springer, Berlin, 1989.

8. Klaus Weihrauch. Computability on computable metric spaces. Theoretical Com-
puter Science, 113:191–210, 1993. Fundamental Study.

9. Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
10. Mariko Yasugi, Takakazu Mori, and Yoshiki Tsujii. Effective properties of sets and

functions in metric spaces with computability structure. Theoretical Computer
Science, 219:467–486, 1999.

12


