A construction of a λ - Poisson generic sequence

Gabriel Sac Himelfarb Joint work with Verónica Becher

Universidad de Buenos Aires (UBA)

May 23rd 2022

Plan

- 1 Definitions
- 2 The construction: core ideas
- 3 Limitations of the construction
- 4 Further results

Poisson Generic Sequences

Fix Ω an alphabet with b symbols.

Notation

Given $x \in \Omega^{\mathbb{N}}$, $\lambda \in \mathbb{R}_{>0}$, $i \in \mathbb{N}_0$ and $k \in \mathbb{N}$ we write $Z_{i,k}^{\lambda}(x)$ for the proportion of words of length k that occur exactly i times in the prefix of x of length $\lfloor \lambda b^k \rfloor$, that is:

$$Z_{i,k}^{\lambda}(x) = \frac{\#\{\omega \in \Omega^k : \omega \text{ occurs i times in } x[1...\lfloor \lambda b^k \rfloor]\}}{b^k}$$

Definition (Zeev Rudnick)

We say $x \in \Omega^{\mathbb{N}}$ is λ -Poisson generic if for every $i \in \mathbb{N}_0$:

$$\lim_{k\to\infty} Z_{i,k}^{\lambda}(x) = \frac{e^{-\lambda}\lambda^i}{i!}$$

x is **Poisson generic** if it is λ -Poisson generic for every $\lambda > 0$.

The problem

Question (Weiss)

Is it possible to give an explicit construction of a 1-Poisson generic sequence?

The problem

Question (Weiss)

Is it possible to give an explicit construction of a 1-Poisson generic sequence?

Theorem (Álvarez, Becher, Mereb)

There are computable Poisson generic sequences.

The problem

Question (Weiss)

Is it possible to give an explicit construction of a 1-Poisson generic sequence?

Theorem (Álvarez, Becher, Mereb)

There are computable Poisson generic sequences.

Question

Can we give a "more explicit" example?

Main theorem

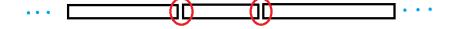
Theorem (Becher, S.H.) λ -Poisson explicit number

Let λ be a positive real number and Ω a b-symbol alphabet , $b \geq 3$. Let $(p_i)_{i \in \mathbb{N}_0}$ be a sequence of non-negative real numbers such that $\sum_{i \geq 0} p_i = 1$ and $\sum_{i \geq 0} i p_i = \lambda$. Then there is a construction of an infinite sequence x over alphabet Ω , which satisfies for every $i \in \mathbb{N}_0$,

$$\lim_{k\to\infty}Z_{i,k}^{\lambda}(x)=p_i.$$

The construction: Core ideas

Concatenating big blocks



The construction: Core ideas

Concatenating big blocks

Where do we take the blocks from?

The construction: Core ideas

Concatenating big blocks

Where do we take the blocks from?

An infinite de Bruijn word

Definition

A cyclic de Bruijn sequence of order k is a sequence w of length b^k where each word of length k occurs exactly once in the circular sequence determined by w.

Theorem (Becher, Heiber)

For $b \ge 3$ there exists an infinite word x such that every prefix $x[1...b^k]$ is a cyclic de Bruijn word in base b of order k.

Definition

Given a sequence w of length b^k we say δ is a **block** in w if it is a subsequence of w and $|\delta| = b^j \le b^k$ for some $j \in \mathbb{N}_0$. We say that a block δ in w has **absolute length** $|\delta|$ and **relative length** $|\delta|b^{-k}$ with respect to w.

Fix A an infinite de Bruijn word in base b.

$$A = 012110022101020001112021222...$$

In step k+1 of the construction we will take blocks from $A[b^k+1\dots b^{k+1}]$:

$$A = 0.12 \left| 110022 \left| 101020001112021222 \right| \dots \right|$$

We always pick **non- overlapping** blocks.

Why infinite de Bruijn words?

- If a block contributes a to $Z_{2,k}^{\lambda}$, then it contributes approximately with $\frac{1}{b}a$ to $Z_{2,k+1}^{\lambda}$.
- We can add the contributions to $Z_{i,k}^{\lambda}$ of distinct non-overlapping blocks that are repeated exactly i times.

Notation

Given a real number $y \in [0,1)$, we write $\{y\}_k$ for the truncation to k digits of the unique base-b representation of y which does not end in an infinite tail of (b-1)'s.

Notation

Given a real number $y \in [0,1)$, we write $\{y\}_k$ for the truncation to k digits of the unique base-b representation of y which does not end in an infinite tail of (b-1)'s.

The construction. Step 1

The construction works by steps. Let x_k be the output of the construction after Step k. Start with x_0 equal to the empty word.

Step 1 For
$$i \geq 1$$

$$\{p_i\}_1 = 0, c_i \text{ (base b expansion)}$$

For each c_i , $i \ge 1$, choose c_i blocks of relative length b^{-1} with respect to A[1...b].

Concatenate the chosen blocks, in any order, where for every $i \ge 1$ each of the c_i selected blocks is repeated exactly i times.

An example: Take $p_0 = 0$, $p_1 = 1/2$, $p_2 = 5/18$, $p_3 = 2/9$, and $p_i = 0$ for $i \ge 4$. In this case $\lambda = 31/18$. Now fix b = 3, $\Omega = \{0, 1, 2\}$ and

A = 012110022101020001112021222...

$$p_1 = 0, 1111...$$

 $p_2 = 0, 0211...$
 $p_3 = 0, 0200...$
Step 1:

$$A = \boxed{0} 12 \left| 110022 \left| 101020001112021222 \right| \dots \right.$$

$$x_1 = \boxed{0}$$

Step k+1

Step k+1 For $i \ge 1$:

$$\left\{\frac{b-1}{b}p_i\right\}_{g(k+1)}=0, a_{i,1}a_{i,2}..a_{i,g(k+1)} \text{ (base b expansion)}$$

where $a_{i,j} \in \{0, 1, 2, ..., b-1\}.$

- We select blocks in $A_{k+1}[b^k + 1...b^{k+1}]$ in the following manner:
 - For each $a_{i,j}$, we choose $a_{i,j}$ blocks of relative length b^{-j} with respect to $A[1...b^{k+1}]$. All the selected blocks should be non-overlapping.
- The construction appends these blocks to x_k . For every $i \ge 1$, $j \le g(k+1)$, each of the $a_{i,j}$ selected blocks is repeated exactly i times.

Definition

We refer to each of the chosen blocks of A as **constituent** segments in the output x_{k+1} .

We say that the concatenation of *i*-many copies of a constituent segment corresponding to $a_{i,j}$ is a **run segment** in the output.

In this case, $\boxed{112}$ $\boxed{112}$ is the run segment corresponding to the constituent segment $\boxed{112}$, and $\boxed{021}$ $\boxed{021}$ $\boxed{021}$ is the run segment corresponding to the constituent segment $\boxed{021}$.

Theorem

Let x be the infinite word output by the algorithm. Then $\lim_{k\to\infty}Z_{i,k}^{\lambda}(x)=p_i$ for every $i\geq 0$.

Theorem

Let x be the infinite word output by the algorithm. Then $\lim_{k\to\infty} Z_{i,k}^{\lambda}(x) = p_i$ for every $i \geq 0$.

Definition

For every $i \geq 1$, p_i^k denotes the sum of the relative lengths with respect to $A[1...b^k]$ of all constituent segments in the output x_k that are repeated exactly i times.

We define $p_0^k = 1 - \sum_{i \ge 1} p_i^k$.

Theorem

Let x be the infinite word output by the algorithm. Then $\lim_{k\to\infty} Z_{i,k}^{\lambda}(x) = p_i$ for every $i \geq 0$.

Definition

For every $i \geq 1$, p_i^k denotes the sum of the relative lengths with respect to $A[1...b^k]$ of all constituent segments in the output x_k that are repeated exactly i times.

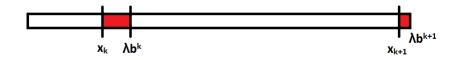
We define $p_0^k = 1 - \sum_{i \ge 1} p_i^k$.

Proof: We will use p_i^k as an approximation for $Z_{i,k}^{\lambda}(x)$.

We are assuming the contribution of a constituent segment to the numerator of $Z_{i,k}^{\lambda}(x)$ is its absolute length.

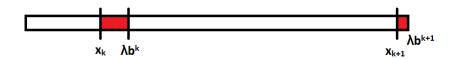
Correctness: Bounding the error

First error



Correctness: Bounding the error

First error



Lemma

Let x_k be the word output by the construction after step k. Then,

$$\lim_{k\to\infty}\frac{|\lfloor\lambda b^k\rfloor-|x_k||}{b^k}=0.$$

Second error

Let B_k be the number of run segments in the output x_k . Error $\sim kB_k$

Second error

Let B_k be the number of run segments in the output x_k . Error $\sim kB_k$

Lemma

If we set $g(k) = \lceil k/2 \rceil$ then the quantities B_k satisfy

$$\lim_{k\to\infty}\frac{kB_k}{b^k}=0.$$

To conclude:

Lemma

For every $i \in \mathbb{N}_0$, $\lim_{k \to \infty} p_i^k = p_i$. In fact, for every $i \ge 1$, $k \ge 1$, the following estimation holds,

$$p_i - \frac{k}{b^{g(k)}} \le p_i^k \le p_i.$$

Limitations

The construction does not allow us to generate a Poisson generic sequence.

Suppose we construct x for $\lambda=1$. Then the frequencies for $\lambda=1/b,\ i\geq 1$, satisfy,

$$\lim_{k \to \infty} Z_{i,k+1}^{1/b}(x) - \frac{1}{b} Z_{i,k}^{1}(x) = 0.$$

But this relation does not hold in the case of the probability mass function of the Poisson distribution:

$$e^{-1/b} \frac{1}{b^i i!} \neq e^{-1} \frac{1}{bi!}.$$

Further results

Theorem (Becher, S.H.)

Let Ω be a b-symbol alphabet, $b \geq 2$, and let $x \in \Omega^{\mathbb{N}}$. We fix a positive real number λ and define for every $i \in \mathbb{N}_0$ the numbers $p_i = \liminf_{k \to \infty} Z_{i,k}^{\lambda}(x)$. If the numbers p_i satisfy $\sum_{i \geq 0} i p_i = \lambda$ then x is normal to base b.

Corollary

The presented construction yields infinitely many Borel normal sequences which are not λ -Poisson generic.

Thanks!

Thank you! Questions?