Computability of One-Point Metric Bases

Konrad Burnik * Zvonko Iljazović † Lucija Validžić ‡

A connection between the computability of an arc and the computability of its endpoints has been very well studied. Miller has shown in [4] that there exists a computable arc in \mathbb{R}^2 with noncomputable endpoints. However, a computable arc in \mathbb{R} has to be of the form [a, b], where a and b are computable real numbers. On the other hand, it is known that if endpoints of a semicomputable arc are computable, then the arc is computable ([1, 5]).

Endpoints of a segment in $\mathbf R$ have an interesting property. Namely, if x_0 is an endpoint, than any other point in the segment is uniquely determined by its distance from x_0 , i.e. we have that $d(x,x_0)=d(y,x_0)$ implies x=y. In a general metric space (X,d), we say that a point with such property is a *metric basis* for (X,d) [3]. Using this notion, we generalise the result for computable arcs in $\mathbf R$ to computable metric spaces. Here the assumption of *effective compactness* of the underlying computable metric space (X,d,α) plays an important role.

Theorem 1. Assume that (X, d, α) is effectively compact computable metric space such that the space (X, d) has finitely many connected components. If $x_0 \in X$ is metric basis for (X, d), then x_0 is a computable point in (X, d, α) .

That (X, d, α) is effectively compact means that (X, d) is compact and that there is a computable function $\varphi : \mathbf{N} \to \mathbf{N}$ such that for each $k \in \mathbf{N}$

$$X = \bigcup_{i=0}^{\varphi(k)} B(\alpha_i, 2^{-k}).$$

Effective compactness of (X, d, α) is actually equivalent to X being a computable set in (X, d, α) .

If $a, b \in \mathbf{R}^n$ then a and b are metric bases for the line segment \overline{ab} . So, Theorem 1 easily implies that a computable segment in \mathbf{R}^n has computable endpoints.

Example 1. The assumption of effective compactness in Theorem 1 cannot be omitted. Assume that γ is a positive real number which is left computable but not computable. The segment $[0,\gamma]$ can be viewed as a subspace of the standard computable metric space on ${\bf R}$ ([2]). Obviously γ is a metric basis for $[0,\gamma]$, but it is not computable in $[0,\gamma]$. However, in this example 0 is also a metric basis, so at least there exists a computable metric basis.

^{*}Xebia Data, email: kburnik@gmail.com

[†]University of Zagreb, email: zilj@math.hr

[‡]University of Zagreb, email: lucija.validzic@math.hr

We can look at the segment $[-\gamma, \gamma]$. Using dense computable sequence in $[0, \gamma]$ we can easily construct a dense computable sequence in $[-\gamma, \gamma]$, so this segment can also be viewed as a subspace of the standard computable metric space on \mathbf{R} . However, here neither of the points $-\gamma$, γ (which are only metric bases) are not computable.

The results of Theorem 1 can be extended to some non-compact cases. We have proved the following.

Theorem 2. Let (X, d, α) be a computable metric space which has the effective covering property and compact closed balls. Suppose (X, d) is homeomorphic to $[0, +\infty)$ (i.e. (X, d) is a topological ray). If x_0 is a metric basis for (X, d) then x_0 is a computable point in (X, d, α) .

References

- [1] Z. Iljazović. Co-c.e. spheres and cells in computable metric spaces. *Logical Methods in Computer Science*, 7(3:05):1–21, 2011.
- [2] Z. Iljazović and L. Validžić. Maximal computability structures. *Bulletin of Symbolic Logic*, 22(4):445–468, 2016.
- [3] R.A. Melter and I. Tomescu. Metric bases in digital geometry. *Computer Vision, Graphics, and Image Processing*, 25:113–121, 1984.
- [4] J.S. Miller. Effectiveness for embedded spheres and balls. *Electronic Notes in Theoretical Computer Science*, 66:127–138, 2002.
- [5] E. Čičković, Z. Iljazović, and L. Validžić. Chainable and circularly chainable semicomputable sets in computable topological spaces. *Archive for Mathematical Logic*, 58:885–897, 2019.