Principal topological spaces

Matthias Schröder

June 13, 2024

The weak ultrafilter axiom WUF postulates the existence of an ultrafilter \mathcal{U} on the subsets of \mathbb{N} that is *free*, meaning $\bigcap(\mathcal{U}) = \emptyset$ (cf. [2]). It is well-known that ZFC validates WUF. By contrast, in Shelah's model of set theory, ZF + DC + BP, the negation of WUF is true (cf. [2, 29.37]). As a consequence, every prime filter \mathcal{F} on O(\mathbb{N}) is *principal*, which means that there is some $n \in \mathbb{N}$ such that $\mathcal{F} = \{M \subseteq \mathbb{N} \mid n \in M\}$.

We investigate the class of qcb₀-spaces which have the latter property. Qcb₀-spaces play a big role in Type Two Theory of Effectivity (TTE) [4]. They form the class of topological spaces which can be handled by TTE, cf. [3]. In the sequel we are working in ZF + DC, where DC stands for the Axiom of Dependent Choice.

Principal spaces: Definition and Examples

Let X be a topological space. Remember that a prime filter \mathcal{F} on the lattice O(X) is a nonempty family of open subsets of X that does not contain \emptyset and is upwards-closed, closed under forming finite intersections, and prime in the sense that $U \cup V \in \mathcal{F}$ implies $U \in \mathcal{F}$ or $V \in \mathcal{F}$ for all $U, V \in O(X)$.

We define X to be a *principal space*, if every prime filter \mathcal{F} on O(X) is equal to the open neighbourhood filter $\{U \text{ open } | x \in U\}$ of some unique point $x \in X$. Filters generated by a point are usually called "principal". Clearly, any principal space is T_0 and sober.

It is easy to see that all finite T_0 -spaces are principal. Moreover, the sobrification of \mathbb{N} equipped with the co-finite topology is principal. By contrast, the Scott domain $\mathcal{P}(\mathbb{N})$ is not principal. In ZFC a qcb₀-space is principal iff it is sober and Noetherian. Moreover, in ZFC all infinite Hausdorff spaces are not principal. The latter follows from:

Proposition 1 If there exists an infinite principal Hausdorff space, then ¬WUF holds.

On the positive side, ¬WUF yields a big supply of principal spaces. Important examples are:

Theorem 2 In $ZF + DC + \neg WUF$ every functionally Hausdorff qcb-space is principal.

Thus the question whether or not the Euclidean space \mathbb{R} is principal depends on the axiomatic setting, and it is unanswerable in $\mathsf{ZF} + \mathsf{DC}$. Functionally Hausdorff qcb-spaces have nice closure properties and encompass all separable metrisable spaces and many spaces used in Functional Analysis (cf. [3]).

Proposition 3 The category of functionally Hausdorff qcb-spaces is cartesian-closed and has all countable limits and all countable co-products.

The Axiom of Determinacy AD used in Game Theory is known to imply the Baire Property Axiom BP and thus $\neg WUF$. Moreover, $ZF + DC + \neg WUF$ is equiconsistent with ZFC.

Applications of principal spaces

Principality has some extraordinary consequences. For example, it implies the following automatic continuity property.

Proposition 4 Let Y be a principal space and X be a topological space. Let $h: O(Y) \to O(X)$ be a function that preserves binary intersection and binary union. Then:

- (1) h is Scott-continuous.
- (2) h preserves arbitrary unions.

Bounded lattice homomorphisms are in bijective correspondence with continuous functions.

Proposition 5 Let Y be a principal space and X be a topological space. Let $h: O(Y) \to O(X)$ be a bounded lattice homomorphism (i.e. h preserves $\bot = \emptyset, \cap, \cup, \top$). Then there is a function $f: X \to Y$ satisfying $f^{-1}[V] = h(V)$ for all open subsets $V \subseteq Y$.

Recently prime ideals on commutative rings got some interest in Computable Analysis [1].

Proposition 6 Let X be a principal T_6 -space. Then for every prime ideal \mathcal{I} on the commutative ring $C(X,\mathbb{R})$ there is a unique $z \in X$ such that z is a zero of all functions in \mathcal{I} ; moreover, there is a function $g \in \mathcal{I}$ such that $g^{-1}\{0\} = \{z\}$.

By contrast, in ZFC there is a prime ideal \mathcal{I} on $C(\mathbb{R}, \mathbb{R})$ such that $\bigcap \{f^{-1}\{0\} \mid f \in \mathcal{I}\}$ is empty. The question arises for which spaces all prime ideals are even generated by some point z of X. Up to now the answer is only known for the case of (certain) zero-dimensional spaces.

Proposition 7 Let X be a principal zero-dimensional hereditarily Lindelöf space. Then for every prime ideal \mathcal{I} on $C(X,\mathbb{R})$ there is some $z \in X$ such that $\mathcal{I} = \{f \in C(X,\mathbb{R}) \mid f(z) = 0\}$.

As an open problem we ask whether Proposition 7 can be extended to all principal T_6 -spaces.

Acknowlegdements

I thank Matthew de Brecht for valuable discussions.

References

- [1] M. de Brecht: A note on the closed prime spectrums of coPolish commutative rings. Proceedings of CCA 2022.
- [2] E. Schechter: Handbook of Analysis and Its Foundations. Academic Press, San Diego (1997).
- [3] M. Schröder: Admissibly Represented Spaces and QCB-Spaces. In: Handbook of Computability and Complexity in Analysis, Springer, 305–346 (2021). Available as arXiv: 2004.09450
- [4] K. Weihrauch: Computable Analysis. Springer, Berlin (2000).