Computability of irreducible continua

Tea Arvaj, Zvonko Iljazović

16.7.2024.

Computability on N

Function $f:\mathbb{N}^k\to\mathbb{N}^l$ is recursive is there exists a Turing machine that computes it.

Computability on N

Function $f: \mathbb{N}^k \to \mathbb{N}^l$ is recursive is there exists a Turing machine that computes it.

Function $g:\mathbb{N}^k\to\mathbb{Q}$ is recursive if there exist recursive functions $a,b,c:\mathbb{N}^k\to\mathbb{N}$ such that

$$g(x) = (-1)^{a(x)} \frac{b(x)}{c(x)}, \ \forall x \in \mathbb{N}^k.$$

Computability on N

Function $f: \mathbb{N}^k \to \mathbb{N}^I$ is recursive is there exists a Turing machine that computes it.

Function $g:\mathbb{N}^k\to\mathbb{Q}$ is recursive if there exist recursive functions $a,b,c:\mathbb{N}^k\to\mathbb{N}$ such that

$$g(x) = (-1)^{a(x)} \frac{b(x)}{c(x)}, \ \forall x \in \mathbb{N}^k.$$

Set $S \subseteq \mathbb{N}^k$ is recursively enumerable if it is an image of some recursive function from \mathbb{N} to \mathbb{N}^k .

Proposition

If $S, T \subseteq \mathbb{N}^k$ are recursively enumerable, then $S \cap T$ and $S \cup T$ are recursively enumerable.

Computable metric space

Function $f: \mathbb{N}^k \to \mathbb{R}$ is recursive if there exists recursive function $F: \mathbb{N}^{k+1} \to \mathbb{Q}$ such that

$$|f(x) - F(x, n)| < 2^{-n}, \ \forall x \in \mathbb{N}^k \ \forall n \in \mathbb{N}.$$

Computable metric space

Function $f: \mathbb{N}^k \to \mathbb{R}$ is recursive if there exists recursive function $F: \mathbb{N}^{k+1} \to \mathbb{Q}$ such that

$$|f(x) - F(x, n)| < 2^{-n}, \ \forall x \in \mathbb{N}^k \ \forall n \in \mathbb{N}.$$

Computable metric space (X, d, α) is metric space (X, d) together with sequence $\alpha : \mathbb{N} \to X$ whose image is dense in X and such that function $\mathbb{N}^2 \to \mathbb{R}$, $(i,j) \mapsto d(\alpha_i, \alpha_J)$ is recursive.

Computable metric space

Function $f: \mathbb{N}^k \to \mathbb{R}$ is recursive if there exists recursive function $F: \mathbb{N}^{k+1} \to \mathbb{Q}$ such that

$$|f(x) - F(x, n)| < 2^{-n}, \ \forall x \in \mathbb{N}^k \ \forall n \in \mathbb{N}.$$

Computable metric space (X, d, α) is metric space (X, d) together with sequence $\alpha : \mathbb{N} \to X$ whose image is dense in X and such that function $\mathbb{N}^2 \to \mathbb{R}$, $(i,j) \mapsto d(\alpha_i, \alpha_J)$ is recursive.

Example

If $\alpha: \mathbb{N} \to \mathbb{Q}$ is recursive surjection, then $\alpha(\mathbb{N})$ is dense in \mathbb{R} , and function $(i,j) \mapsto |\alpha_i - \alpha_j|$ is recursive. That means that \mathbb{R} with standard metric and sequence α is computable metric space.

Computable point

We say that $x \in \mathbb{R}$ is a computable number if there exists a recursive function $f : \mathbb{N} \to \mathbb{Q}$ such that

$$|x-f(k)| < 2^{-k}, \ \forall k \in \mathbb{N}.$$

Computable point

We say that $x \in \mathbb{R}$ is a computable number if there exists a recursive function $f : \mathbb{N} \to \mathbb{Q}$ such that

$$|x-f(k)|<2^{-k}, \ \forall k\in\mathbb{N}.$$

Let (X, d, α) be a computable metric space. We say that $x \in X$ is a computable point if there exists a recursive function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d(x, \alpha_{f(k)}) < 2^{-k}, \ \forall k \in \mathbb{N}.$$

Computable point

We say that $x \in \mathbb{R}$ is a computable number if there exists a recursive function $f : \mathbb{N} \to \mathbb{Q}$ such that

$$|x-f(k)|<2^{-k}, \ \forall k\in\mathbb{N}.$$

Let (X, d, α) be a computable metric space. We say that $x \in X$ is a computable point if there exists a recursive function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d(x, \alpha_{f(k)}) < 2^{-k}, \ \forall k \in \mathbb{N}.$$

Sequence $x:\mathbb{N}\to X$ is computable if there exists recursive function $g:\mathbb{N}^2\to\mathbb{N}$ such that

$$d(x_n, \alpha_{g(n,k)}) < 2^{-k}, \ \forall n, k \in \mathbb{N}.$$

Let $[\cdot]: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ be a recursive function whose image is family of all finite nonempty subsets of \mathbb{N} .

Let $[\cdot]: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ be a recursive function whose image is family of all finite nonempty subsets of \mathbb{N} .

Let (X, d, α) be a computable metric space.

For $S,T\subseteq X$ and $\varepsilon>0$, we denote $S\approx_{\varepsilon} T$ if

$$(\forall x \in S)(\exists y \in T)(d(x,y) < \varepsilon)$$
 and $(\forall y \in T)(\exists x \in S)(d(x,y) < \varepsilon)$.

Let $[\cdot]: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ be a recursive function whose image is family of all finite nonempty subsets of \mathbb{N} .

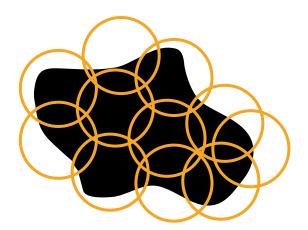
Let (X, d, α) be a computable metric space.

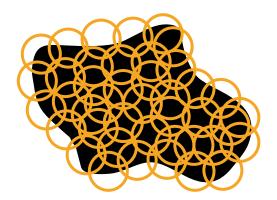
For $S, T \subseteq X$ and $\varepsilon > 0$, we denote $S \approx_{\varepsilon} T$ if

$$(\forall x \in S)(\exists y \in T)(d(x,y) < \varepsilon)$$
 and $(\forall y \in T)(\exists x \in S)(d(x,y) < \varepsilon)$.

Compact set $S\subseteq X$ is computable if there exists recursive function $f:\mathbb{N}\to\mathbb{N}$ such that

$$S \approx_{2^{-k}} \alpha([f(k)]), \ \forall k \in \mathbb{N}.$$





Rational open sets

For $i \in \mathbb{N}$ and $r \in \mathbb{Q}$, r > 0, we say that $B(\alpha_i, r)$ is a rational open ball in (X, d, α) . Finite unions of rational open balls are called rational open sets.

Rational open sets

For $i \in \mathbb{N}$ and $r \in \mathbb{Q}$, r > 0, we say that $B(\alpha_i, r)$ is a rational open ball in (X, d, α) . Finite unions of rational open balls are called rational open sets.

If $q: \mathbb{N} \to \mathbb{Q}$ is recursive function, and $q(\mathbb{N}) = \mathbb{Q} \cap \langle 0, \infty \rangle$, we can recursively enumerate the set of all rational open balls using q and α .

We denote that sequence of rational open balls with $(I_i)_{i \in \mathbb{N}}$.

Rational open sets

For $i \in \mathbb{N}$ and $r \in \mathbb{Q}$, r > 0, we say that $B(\alpha_i, r)$ is a rational open ball in (X, d, α) . Finite unions of rational open balls are called rational open sets.

If $q: \mathbb{N} \to \mathbb{Q}$ is recursive function, and $q(\mathbb{N}) = \mathbb{Q} \cap \langle 0, \infty \rangle$, we can recursively enumerate the set of all rational open balls using q and α .

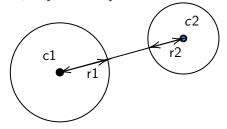
We denote that sequence of rational open balls with $(I_i)_{i\in\mathbb{N}}$. Then

$$(J_j)_{j\in\mathbb{N}},\ J_j=\bigcup_{i\in[j]}I_i$$

is a sequence of all rational open sets.

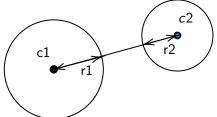
We define relation ⋄:

For $I_i = B(c_i, r_i)$ and $I_j = B(c_j, r_j)$ we define $I_i \diamond I_j$ iff $d(c_i, c_j) > r_i + r_j$.



We define relation \diamond :

For $I_i = B(c_i, r_i)$ and $I_j = B(c_j, r_j)$ we define $I_i \diamond I_j$ iff $d(c_i, c_j) > r_i + r_j$.



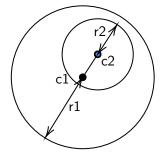
$$I_i \diamond I_j \Longrightarrow I_i \cap I_j = \emptyset$$

For J_u and J_v we define $J_u \diamond J_v$ iff $\forall i \in [u] \ \forall j \in [v] \ I_i \diamond I_j$. $J_u \diamond J_v \Longrightarrow J_u \cap J_v = \emptyset$

Set $\{(u,v) \in \mathbb{N}^2 \mid J_u \diamond J_v\}$ is recursively enumerable.

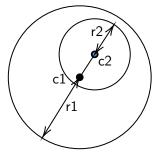
We define relation \subseteq_F :

For $I_i = B(c_i, r_i)$ and $I_j = B(c_j, r_j)$ we define $I_i \subseteq_F I_j$ iff $d(c_i, c_j) + r_i < r_j$.



We define relation \subseteq_F :

For $I_i = B(c_i, r_i)$ and $I_j = B(c_j, r_j)$ we define $I_i \subseteq_F I_j$ iff $d(c_i, c_j) + r_i < r_j$.



$$I_i \subseteq_F I_j \Longrightarrow I_i \subseteq I_j$$

For J_u and J_v we define $J_u \subseteq_F J_v$ iff $\forall i \in [u] \ \exists j \in [v] \ I_i \subseteq_F I_j$.

$$J_u \subseteq_F J_v \Longrightarrow J_u \subseteq J_v$$

Closed set $S \subseteq X$ is computably enumerable if set $\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$ is recursively enumerable.

Closed set $S \subseteq X$ is computably enumerable if set $\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$ is recursively enumerable.

If $(x)_{n\in\mathbb{N}}$ is a computable sequence, then set $\overline{\{x(n)\mid n\in\mathbb{N}\}}$ is computably enumerable.

If $S \subseteq X$ is computably enumerable and complete, then there exists a computable sequence $(x)_{n \in \mathbb{N}}$ such that $S = \overline{\{x(n) \mid n \in \mathbb{N}\}}$.

Closed set $S \subseteq X$ is computably enumerable if set $\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$ is recursively enumerable.

If $(x)_{n\in\mathbb{N}}$ is a computable sequence, then set $\overline{\{x(n)\mid n\in\mathbb{N}\}}$ is computably enumerable.

If $S \subseteq X$ is computably enumerable and complete, then there exists a computable sequence $(x)_{n \in \mathbb{N}}$ such that $S = \overline{\{x(n) \mid n \in \mathbb{N}\}}$.

Compact set $S \subseteq X$ is semicomputable if $\{j \in \mathbb{N} \mid S \subseteq J_j\}$ is recursively enumerable.

Closed set $S \subseteq X$ is computably enumerable if set $\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$ is recursively enumerable.

If $(x)_{n\in\mathbb{N}}$ is a computable sequence, then set $\overline{\{x(n)\mid n\in\mathbb{N}\}}$ is computably enumerable.

If $S \subseteq X$ is computably enumerable and complete, then there exists a computable sequence $(x)_{n \in \mathbb{N}}$ such that $S = \overline{\{x(n) \mid n \in \mathbb{N}\}}$.

Compact set $S \subseteq X$ is semicomputable if $\{j \in \mathbb{N} \mid S \subseteq J_j\}$ is recursively enumerable.

S computable $\Longrightarrow S$ semicomputable S semicomputable $\oiint S$ computable

semicomputability \Longrightarrow computability

Semicomputability does imply computability if we have some additional topological assumptions on S. For example, if S is homeomorphic to the sphere S^n .

semicomputability \Longrightarrow computability

Semicomputability does imply computability if we have some additional topological assumptions on S. For example, if S is homeomorphic to the sphere S^n .

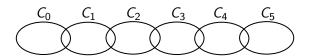
Arc is a topological space homeomorphic to the set [0,1]. Let L be an arc, and $f:[0,1]\to L$ homeomorphism. Then f(0) and f(1) are called the endpoints of L.

Theorem

Let (X, d, α) be a computable metric space, and $S \subseteq X$ semicomputable. If S is a semicomputable arc with computable endpoints, then S is computable.

Let X be a set. Finite sequence C_0, \ldots, C_n of subsets of X is called a chain in X if

$$C_i \cap C_j \neq \emptyset \iff |i-j| \leq 1.$$

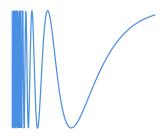


Chain in metric space is said to be an open ε -chain if all links C_i are open sets, and diam $C_i < \varepsilon$ for i = 0, ..., n.

Continuum is a compact connected metric space.

Let (X,d) be continuum, and $a,b\in X$. Continuum X is said to be chainable from a to b if for every $\varepsilon>0$ there exists open ε —chain C_0,\ldots,C_n such that $a\in C_0,\ b\in C_n$ and $X=\bigcup_{i=0}^n C_i$.

$$\{0\} \times [-1,1] \cup \{(x,\sin \tfrac{1}{x}) \mid 0 < x \leq a\}$$



Theorem

Let (X, d, α) be a computable metric space, and $S \subseteq X$ semicomputable. If S is a continuum chainable from a to b, where a and b are computable points, then S is computable.

Important step in the proof is showing that continuum X chainable from a to b has the following property:

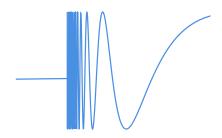
for every $x \in X \setminus \{a, b\}$ and every $\varepsilon > 0$ there exist compact sets $F, G \subseteq X$ such that $F \cap G = \emptyset$, $a \in F$, $b \in G$ and $X = F \cup B(x, \varepsilon) \cup G$. (*)

Important step in the proof is showing that continuum X chainable from a to b has the following property:

for every $x \in X \setminus \{a, b\}$ and every $\varepsilon > 0$ there exist compact sets $F, G \subseteq X$ such that $F \cap G = \emptyset$, $a \in F$, $b \in G$ and $X = F \cup B(x, \varepsilon) \cup G$. (*)

We have shown that continuum X has that property if and only if it is irreducible between a and b, i.e. there are no proper subcontinua of X that contain both a and b.

Irreducible continuum



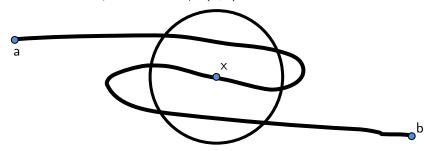
Irreducible continuum

Theorem

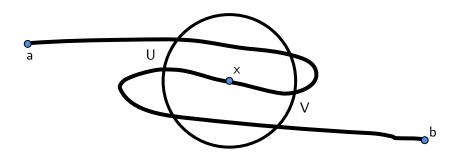
Let (X, d, α) be a computable metric space, and $S \subseteq X$ semicomputable. If S is a continuum irreducible from a to b, where a and b are computable points, then S is computable.

If S is irreducible between a and b, then S has property (*):

let $x \in S \setminus \{a, b\}$, and r > 0 such that $a, b \notin B(x, r)$. From irreducibility of S it follows that a and b belong to different connected components of $S \setminus B(x, r)$.



It is a known result that in that case, there exists (U,V) a separation of $S \setminus B(x,r)$, such that $a \in U$ and $b \in V$. Since U,V are closed in S, they are also compact. We have disjoint compact sets U,V such that $a \in U$, $b \in V$ and $S = U \cup B(x,r) \cup V$. Therefore, S has property (*).



If S has property (*), then S is irreducible between a and b:

If we assume that S is not irreducible between a and b, then there exists a proper subcontinuum $a,b\in K\subset S$. Set $S\setminus K$ is nonempty and open in S, so there exist a point $x\in S\setminus \{a,b\}$ and $\varepsilon>0$ such that $B(x,\varepsilon)\cap K=\emptyset$.

Points a and b are in the same connected component of $S \setminus B(x,\varepsilon)$. So there can not exist two disjoint compacts F,G in $S \setminus B(x,\varepsilon)$ such that $a \in F$ and $b \in G$. That is in contradiction with property (*).

Set S is computable iff it is semicomputable and computably enumerable.

Assumption: S is semicomputable continuum irreducible between computable points a and b.

We need to show that S is computably enumerable, i.e. that set $\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$ is recursively enumerable.

We have $I_i \cap S \neq \emptyset$ iff there exist $u, v \in \mathbb{N}$ such that $J_u \diamond J_v$, $S \subseteq J_u \cup I_i \cup J_v$, $a \in J_u$ and $b \in J_v$.

Since S has property (*) there exist disjoint compacts F, G such that $a \in F$, $b \in G$ and $S = F \cup B(x, \varepsilon) \cup G$.

Since S has property (*) there exist disjoint compacts F, G such that $a \in F$, $b \in G$ and $S = F \cup B(x, \varepsilon) \cup G$.

There exist $u, v \in \mathbb{N}$ such that $F \subseteq J_u$, $G \subseteq J_v$ and $J_u \diamond J_v$. We have shown that if $I_i \cap S \neq \emptyset$, then there exist $u, v \in \mathbb{N}$ such that $J_u \diamond J_v$, $S \subseteq J_u \cup I_i \cup J_v$, $a \in J_u$ and $b \in J_v$.

Since S has property (*) there exist disjoint compacts F, G such that $a \in F$, $b \in G$ and $S = F \cup B(x, \varepsilon) \cup G$.

There exist $u, v \in \mathbb{N}$ such that $F \subseteq J_u$, $G \subseteq J_v$ and $J_u \diamond J_v$. We have shown that if $I_i \cap S \neq \emptyset$, then there exist $u, v \in \mathbb{N}$ such that $J_u \diamond J_v$, $S \subseteq J_u \cup I_i \cup J_v$, $a \in J_u$ and $b \in J_v$. Converse also holds.

Since S has property (*) there exist disjoint compacts F, G such that $a \in F$, $b \in G$ and $S = F \cup B(x, \varepsilon) \cup G$.

There exist $u, v \in \mathbb{N}$ such that $F \subseteq J_u$, $G \subseteq J_v$ and $J_u \diamond J_v$. We have shown that if $I_i \cap S \neq \emptyset$, then there exist $u, v \in \mathbb{N}$ such that $J_u \diamond J_v$, $S \subseteq J_u \cup I_i \cup J_v$, $a \in J_u$ and $b \in J_v$. Converse also holds.

Set $\{(i, u, v) \in \mathbb{N}^3 \mid J_u \diamond J_v, S \subseteq J_u \cup I_i \cup J_v, a \in J_u, b \in J_v\}$ is recursively enumerable, so $\{i \in \mathbb{N} \mid I_i \cap S \neq \emptyset\}$ is also recursively enumerable.

Computable points

If S is computable set, then it contains computable point. Moreover, computable points are dense in S.

Does semicomputable set necessarily contain computable points?

Computable points

If S is computable set, then it contains computable point. Moreover, computable points are dense in S.

Does semicomputable set necessarily contain computable points?

No.

Theorem

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable arc with endpoints a and b. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$, $d(a,\hat{a})<\varepsilon$, $d(b,\hat{b})<\varepsilon$ such that the subarc of S with endpoints \hat{a} and \hat{b} is a computable set in (X,d,α) .

Theorem

Let (X,d,α) be a computable metric space and $S\subseteq X$ semicomputable, decomposable, chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Our result

Let (X,d,α) be a computable metric space and $S\subseteq X$ semicomputable continuum irreducible beetween a and b. If there exist proper subcontinua $K_1,K_2,K_3\subseteq S$ such that $S=K_1\cup K_2\cup K_3$ and $S\neq K_i\cup K_j$, for $i,j\in 1,2,3$, then S contains an open set in which computable points are dense.

WLOG $a \in K_1$ and $b \in K_2$. Since $S \setminus (K_1 \cup K_2)$ is nonepty and open in S, there exists $i_0 \in \mathbb{N}$ such that $\emptyset \neq I_{i_0} \cap S \subseteq S \setminus (K_1 \cup K_2)$.

WLOG $a \in K_1$ and $b \in K_2$. Since $S \setminus (K_1 \cup K_2)$ is nonepty and open in S, there exists $i_0 \in \mathbb{N}$ such that $\emptyset \neq I_{i_0} \cap S \subseteq S \setminus (K_1 \cup K_2)$.

$$a \notin K_2 \cup K_3 \Longrightarrow \exists \tilde{a} \in \mathbb{N}$$
 such that $a \notin J_{\tilde{a}}$ and $K_2 \cup K_3 \subseteq J_{\tilde{a}}$

$$b \notin K_1 \cup K_3 \Longrightarrow \exists \tilde{b} \in \mathbb{N}$$
 such that $b \notin J_{\tilde{b}}$ and $K_1 \cup K_3 \subseteq J_{\tilde{b}}$

WLOG $a \in K_1$ and $b \in K_2$. Since $S \setminus (K_1 \cup K_2)$ is nonepty and open in S, there exists $i_0 \in \mathbb{N}$ such that $\emptyset \neq I_{i_0} \cap S \subseteq S \setminus (K_1 \cup K_2)$.

$$a \notin K_2 \cup K_3 \Longrightarrow \exists \tilde{a} \in \mathbb{N}$$
 such that $a \notin J_{\tilde{a}}$ and $K_2 \cup K_3 \subseteq J_{\tilde{a}}$

$$b \notin K_1 \cup K_3 \Longrightarrow \exists \tilde{b} \in \mathbb{N}$$
 such that $b \notin J_{\tilde{b}}$ and $K_1 \cup K_3 \subseteq J_{\tilde{b}}$

We claim that $\overline{I_{i_0} \cap S}$ is computably enumerable, i.e. that set $\{i \in \mathbb{N} \mid I_i \cap \overline{I_{i_0} \cap S} \neq \emptyset\}$ is recursively enumerable.

Assume $I_i \cap \overline{I_{i_0} \cap S} \neq \emptyset$, then there exist $x \in S$, r > 0 such that $B(x,r) \subseteq I_i \cap I_{i_0}$ and $B(x,r) \subseteq S \setminus (K_1 \cup K_2)$. Continuum S has property (*), so there exist disjoint compacts $F, G \subseteq S$ such that $a \in F$, $b \in G$ and $S = F \cup B(x,r) \cup G$.

Assume $I_i \cap \overline{I_{i_0} \cap S} \neq \emptyset$, then there exist $x \in S$, r > 0 such that $B(x,r) \subseteq I_i \cap I_{i_0}$ and $B(x,r) \subseteq S \setminus (K_1 \cup K_2)$. Continuum S has property (*), so there exist disjoint compacts $F, G \subseteq S$ such that $a \in F$, $b \in G$ and $S = F \cup B(x,r) \cup G$.

It follows that $K_1 \cup K_2 \subseteq F \cup G$, and since K_1, K_2 are connected, $K_1 \subseteq F$ and $K_2 \subseteq G$.

Assume $I_i \cap \overline{I_{i_0} \cap S} \neq \emptyset$, then there exist $x \in S$, r > 0 such that $B(x,r) \subseteq I_i \cap I_{i_0}$ and $B(x,r) \subseteq S \setminus (K_1 \cup K_2)$. Continuum S has property (*), so there exist disjoint compacts $F, G \subseteq S$ such that $a \in F$, $b \in G$ and $S = F \cup B(x,r) \cup G$.

It follows that $K_1 \cup K_2 \subseteq F \cup G$, and since K_1, K_2 are connected, $K_1 \subseteq F$ and $K_2 \subseteq G$.

$$K_1 \cap G = \emptyset \Longrightarrow G \subseteq S \setminus K_1 \Longrightarrow G \subseteq K_2 \cup K_3 \subseteq J_{\tilde{a}}$$

 $K_2 \cap F = \emptyset \Longrightarrow F \subseteq S \setminus K_2 \Longrightarrow F \subseteq K_1 \cup K_3 \subseteq J_{\tilde{b}}$

There exist $u, v, w \in \mathbb{N}$ such that $J_u \diamond J_v$, $F \subseteq J_u \subseteq_F J_{\tilde{b}}$ and $G \subseteq J_V \subseteq_F J_{\tilde{a}}$, and $B(x, r) \subseteq J_w \subseteq_F I_i$.

There exist $u, v, w \in \mathbb{N}$ such that $J_u \diamond J_v$, $F \subseteq J_u \subseteq_F J_{\tilde{b}}$ and $G \subseteq J_V \subseteq_F J_{\tilde{a}}$, and $B(x, r) \subseteq J_w \subseteq_F I_i$. We define

$$\Omega = \{(i, u, v, w) \in \mathbb{N}^4 \mid J_u \diamond J_v, J_u \subseteq_F J_{\tilde{b}}, J_v \subseteq_F J_{\tilde{a}}, J_w \subseteq I_i, S \subseteq J_u \cup J_v \cup J_w\}.$$

We have $I_i \cap \overline{I_{i_0} \cap S} \neq \emptyset$ iff there exist $u, v, w \in \mathbb{N}$ such that $(i, u, v, w) \in \Omega$. Since Ω is recursively enumerable, then $\{i \in \mathbb{N} \mid I_i \cap \overline{I_{i_0} \cap S} \neq \emptyset\}$ is also recursively enumerable.

Thank you for your attention!