Towards Numerical Stability Analysis via Universal Envelopes (work in progress)

Eike Neumann

Swansea University, Swansea, UK

CCA 2024, Swansea, UK 18 July 2024

Black-Box Abstraction

- Idea: build complex programs from simpler ones.
- View programs as "black boxes" that satisfy some formal specification.
- Compose these "black boxes" to make new "black boxes".
- In this talk, I will refer to "black boxes" as modules.

Black-Box Abstraction via Computable Functions

- Module: (realiser of a) computable (multi-valued) function.
- Composition rule: type of domain and co-domain match.

Problem (?):

- Over continuous data, this does not capture everything that practitioners consider possible.
- Numerical analysts provide "modules" for discontinuous (and hence uncomputable functions): QR-decomposition, singular value decomposition, finding Brouwer fixed points, etc.
- A solution to such a problem is an algorithm that produces a slightly perturbed solution to a slightly perturbed problem instance.
- Problem: this is not closed under composition.

Backwards Approximations

X, Y metric spaces.

$$f: X \to Y$$

The backwards approximation of f is

$$^{\dagger}f: X \times (0, +\infty) \Rightarrow Y,$$
 $^{\dagger}f(x, \delta) = f(B(x, \delta)).$

Fact. There exist $f: X \to Y$ and $g: Y \to Z$ such that $g \circ f$ is continuous, but $g(f(x,\delta),\delta) \not\to g \circ f(x)$ as $\delta \to 0$.

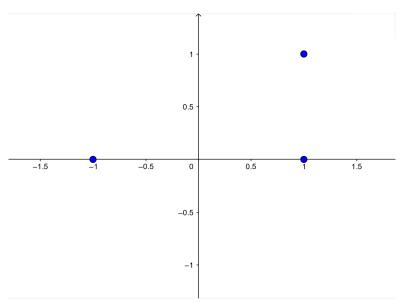
"Realistic" Example

- Goal: locate the convex hull of a set of points (with real number coordinates) in the plane.
- This is a computable problem.
- Computing the convex hull in the sense of Computational Geometry: extract from the points a list of points representing a polygon that bounds the convex hull.
- An "approximate" solution to the Computational Geometry problem allows us to locate the convex hull.
- How to find an approximate solution? Use an algorithm from Computational Geometry!

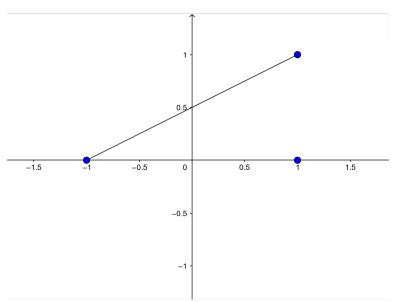
Jarvis Wrap

```
public static List<Point> ConvexHull (Point[] points)
```

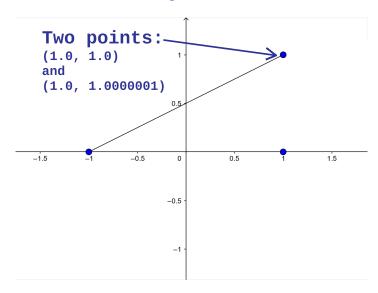
A Set of Points



The Output of the Algorithm



The Output of the Algorithm



High Level Questions

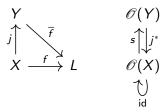
- What should a "module" look like in the context of "approximate computation"?
- What are the rules for composing modules?

ldea

- Basic modules: functions that compute backwards approximations + universal envelopes
- Composition rule: modules are composable if the composition of the universal envelopes is a universal envelope of the composition.
- Modules: elements of the closure of the basic modules under the composition rule.

Injective Spaces

A QCB-space L is (Σ -split) injective if every continuous map $f: X \to L$ extends continuously along every Σ -split embedding $j: X \to Y$:



Fact. Injective spaces are simultaneously \mathscr{K} -algebras and \mathscr{V} -algebras, and hence complete lattices.

Envelopes

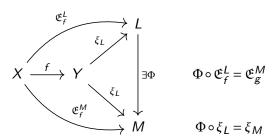
Let $f: X \to Y$ be any map.

Let L be an injective space with a Σ -split embedding $\xi_L \colon Y \to L$.

The L-envelope of f is the greatest continuous map $\mathfrak{E}_f^L \colon X \to L$ satisfying

$$\mathfrak{E}_f^L \leq \xi_L \circ f.$$

Tightening:



An envelope of f is called universal if it tightens all envelopes of f.

Envelopes and Backwards Approximations

Theorem (N. 2022)

Let X_1, \ldots, X_{n+1} be a finite sequence of computable metric spaces. Let $f_i \colon X_i \to X_{i+1}$, $i=1,\ldots,n$. For $i=1,\ldots,n$, let $F_i \colon X_i \to \mathscr{K}_{\perp}(X_{i+1})$ be the $\mathscr{K}_{\perp}(X_{i+1})$ -envelope of f_i . Assume that $F_i(x) \neq \bot$ for all $x \in X_i$. Then the following are equivalent:

- For all $x \in X_1$ and all $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $y \in {}^\dagger f_n(\cdot, \delta) \circ \cdots \circ {}^\dagger f_1(\cdot, \delta)(x)$ we have $d(y, f_n \circ \cdots \circ f_1(x)) < \varepsilon$. Moreover, this convergence is uniform on compact sets
- We have $F_n \circ \cdots \circ F_1(x) = \{f_n \circ \cdots \circ f_1(x)\}$ for all $x \in X_1$. Here, the composition of the F_i 's is taken in the Kleisli category of the monad \mathcal{K}_{\perp} .

Backwards Approximations: a Flaw in the Definition

- The backwards approximations above do not capture everything we can and should do...
- Consider

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \begin{cases} -x & \text{if } x < 0, \\ 1 & \text{otherwise.} \end{cases}$$

- $f \circ f = 1$.
- The $\mathscr{K}_{\perp}(\mathbb{R})$ envelope is

$$F(x) = \begin{cases} \{-x\} & \text{if } x < 0, \\ \{0, 1\} & \text{if } x = 0, \\ \{1\} & \text{if } x > 0. \end{cases}$$

- $F \circ F(0) = \{0, 1\} \neq \{f \circ f(0)\}.$
- By the theorem, ${}^{\dagger}f({}^{\dagger}f(0,\delta),\delta)$ does not converge to 1 as $\delta \to 0$.
- Problem: $f(B(0,\delta))$ contains arbitrarily small numbers.

More general set up

Consider functions

$$f: X \to U \subseteq Y$$

where:

- X and Y are computable metric spaces.
- U is an open subset of Y satisfying $f(X) \subseteq U$.
- ullet Idea: U represents "observable constraints" on the values of f.

Envelopes and Backwards Approximations

Let

$$f: X \to U \subseteq Y$$

as above.

- An envelope of f is an envelope of the function $f: X \to U$.
- "The" backwards approximation of f is the multi-valued map

$$^{\dagger}f: X \times (0,\eta) \Rightarrow Y, ^{\dagger}f(x,\delta) = f(B(x,\delta)) \setminus B(Y \setminus U,\delta)$$

where $\eta > 0$ is chosen such that ${}^{\dagger}f(x,\delta) \neq \emptyset$ for all x and $\delta \in (0,\eta)$.

• A backwards approximation need not exist – we will consider only functions where this does exist.

First Example

$$f: \mathbb{R} \to (0, +\infty) \subseteq \mathbb{R}, f(x) = \begin{cases} -x & \text{if } x < 0, \\ 1 & \text{if } x \ge 0. \end{cases}$$

Universal envelope:

$$\mathfrak{E}_{f}: \mathbb{R} \times \mathbb{R} \to \mathscr{K}_{\perp}(\mathbb{R}), \, \mathfrak{E}_{f}(x) = \begin{cases} \{-x\} & \text{if } x < 0 \\ \{0, 1\} & \text{if } x = 0 \\ \{1\} & \text{if } x > 0 \end{cases}$$

- This is **not** a universal envelope of $f: \mathbb{R} \to \mathbb{R}$.
- The backwards approximation with error δ must produce a number $\geq \delta$.
- Hence $^{\dagger}f(^{\dagger}f(x,\delta),\delta)=1$ for all x.

Example: Labelling Real Numbers with Equality Information

$$\ell_{=?}: \mathbb{R} \times \mathbb{R} \to ((\mathbb{R} \times \mathbb{R}) \setminus \Delta_{\mathbb{R}}) + \mathbb{R} \subseteq \mathbb{R} \times \mathbb{R} + \mathbb{R}.$$

Universal envelope:

$$\mathfrak{E}_{\ell_{=}} : \mathbb{R} \times \mathbb{R} \to \mathscr{K}_{\perp}(\mathbb{R} \times \mathbb{R} + \mathbb{R}), \ \mathfrak{E}_{\ell_{=}}(x, y) = \begin{cases} \{(0, \{x, x\}), (1, \{x\})\} & \text{if } x = y \\ \{(0, \{x, y\})\} & \text{if } x \neq y \end{cases}$$

- This is **not** a universal envelope of $\ell_{=?}$: $\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} + \mathbb{R}$.
- Generalisation: turning a list of objects into a multiset (e.g. count multiplicities of roots, eigenvalues etc.).

Example: Labelling Real Numbers with Equality Information

$$\ell_{=?}: \mathbb{R} \times \mathbb{R} \to ((\mathbb{R} \times \mathbb{R}) \setminus \Delta_{\mathbb{R}}) + \mathbb{R} \subseteq \mathbb{R} \times \mathbb{R} + \mathbb{R}.$$

- Backwards approximation takes $x, y \in \mathbb{R}$, $\delta > 0$ and returns:
 - ► Either a number $z \in \mathbb{R}$ with $|x-z| < \delta$ and $|y-z| < \delta$
 - ▶ or numbers $\widetilde{x}, \widetilde{y} \in \mathbb{R}$ with $|x \widetilde{x}| < \delta$, $|y \widetilde{y}| < \delta$, and $|\widetilde{x} \widetilde{y}| \ge 2\delta$

Example: Division

$$\operatorname{div} \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R} \cup \{\pm \infty, \operatorname{NaN}\} \subseteq \mathbb{R} \cup \{\pm \infty, \operatorname{NaN}\},$$

$$\operatorname{div}(x, y) = \begin{cases} x/y & \text{if } y \neq 0, \\ \pm \infty & \text{if } y = 0, x \neq 0 \\ \operatorname{NaN} & \text{if } y = 0, x = 0 \end{cases}$$

Universal envelope:

$$\mathfrak{E}_{\mathsf{div}} \colon \mathbb{R} \times \mathbb{R} \to \mathscr{K}_{\perp} \big(S^1 \cup \{\pm \infty, \mathsf{NaN}\} \big),$$

$$\mathfrak{E}_{\mathsf{div}} = \begin{cases} \Phi(\{x/y\}) & \text{if } y \neq 0, \\ \{N\} \cup \{\pm \infty\} & \text{if } y = 0, x \neq 0 \\ S^1 \cup \{\mathsf{NaN}, \pm \infty\} & \text{if } y = 0, x = 0 \end{cases}$$

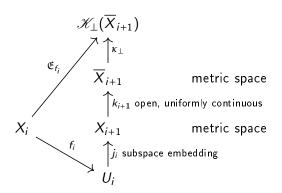
where $\Phi \colon \mathbb{R} \to S^1$ is the inverse stereographic projection, and $N \in S^1$ is the north pole.

Set Up

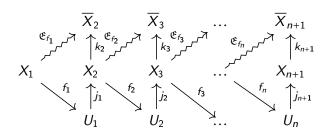
Consider maps

$$f_i: X_i \to U_i \subseteq X_{i+1}$$

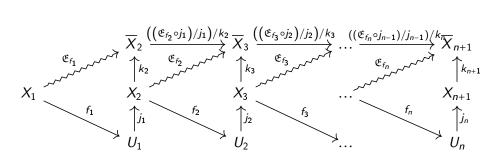
with universal envelopes of the form



Set Up



Set Up



Theorem

Let $f_1, ..., f_n$ be functions as above, and let $F_i : X_i \to \mathscr{K}_{\perp}\left(\overline{X}_{i+1}\right)$ be a universal envelope of f_i for all i. If

$$(((F_n \circ j_{n-1})/j_{n-1})/k_{n-1})_* \circ \cdots \circ (((F_2 \circ j_1)/j_1)/k_1)_* \circ F_1(x)$$

= $\{k_n \circ j_n \circ f_n \circ j_{n-1} \circ \cdots \circ f_2 \circ j_1 \circ f_1(x)\}$

then for all $x \in X_1$:

$${}^{\dagger}f_n(\cdot,\delta)\circ\cdots\circ{}^{\dagger}f_2(\cdot,\delta)\circ{}^{\dagger}f_1(x,\delta)\to f_n\circ\cdots\circ f_2\circ f_1(x)$$

as $\delta \to 0$. Moreover, this convergence is uniform on compact sets.

The converse direction does not hold!

Counterexample

- Let $f_1(x) = \frac{x}{(x-1)^2(x+1)^2}$.
- Extend this to a function $f_1: \mathbb{R} \to \mathbb{R}$ by letting f(1) = 1 and f(-1) = -1.
- Let $f_2(x) = x$.
- Let

$$f_3(x) = \begin{cases} 1 & \text{if } x \ge 0, \\ -1 & \text{if } x < 0. \end{cases}$$

Then

$$^{\dagger}f_3(\cdot,\delta) \circ ^{\dagger}f_2(\cdot,\delta) \circ ^{\dagger}f_1(x,\delta) \rightarrow f_3 \circ f_2 \circ f_1(x)$$

as $\delta \rightarrow 0$, uniformly on compact sets.

Counterexample

Universal envelopes:

$$F_1: \mathbb{R} \to \mathcal{K}_{\perp}([-\infty, +\infty]), \ F_1(x) = \begin{cases} \{k \circ f_1(x)\} & \text{if } x \notin \{1, -1\}, \\ \{1, +\infty\} & \text{if } x = 1, \\ \{-1, -\infty\} & \text{if } x = -1. \end{cases}$$

$$F_2: \mathbb{R} \to \mathscr{K}_{\perp}(\mathbb{R}), F_2(x) = \{x\}.$$

$$F_3: \mathbb{R} \to \mathcal{K}(\mathbb{R}), F_3(x) = \begin{cases} \{-1,1\} & \text{if } x = 0, \\ \{-1\} & \text{if } x < 0, \\ \{1\} & \text{if } x > 0. \end{cases}$$

Counterexample

We have

$$(F_2/k_2)(+\infty) = \bot$$

SO

$$F_3 \circ (F_2/k_2) \circ F_1(1) = \bot.$$

So this "composition" of the universal envelopes is not a universal envelope of the composition.

Co-Envelopes

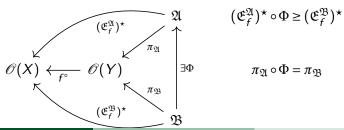
An advice bundle over Y is an injective space $\mathfrak A$ together with a frame homomorphism $\pi_{\mathfrak A}: \mathfrak A \to \mathscr O(Y)$ that admits a section $s\colon \mathscr O(Y) \to \mathfrak A$ (which we may take to be a lower adjoint).

Let $f: X \to Y$. Let $\mathfrak A$ be an advice bundle over Y. The $\mathfrak A$ -co-envelope of f is the greatest continuous map $(\mathfrak E_f^{\mathfrak A})^*: \mathfrak A \to \mathscr O(X)$ satisfying

$$\big(\mathfrak{E}_f^{\mathfrak{A}}\big)^{\star} \leq f^{\circ} \circ \pi_{\mathfrak{A}}$$

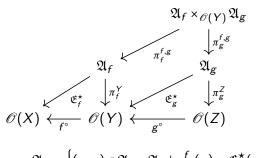
where $f^{\circ}(U) = f^{-1}(U)^{\circ}$.

Tightening:



Composition of Co-Envelopes

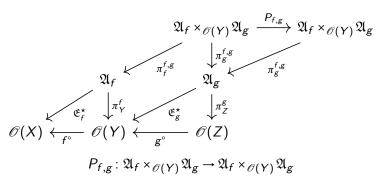
Pullback



$$\mathfrak{A}_f \times_{\mathcal{O}(Y)} \mathfrak{A}_g = \left\{ (x,y) \in \mathfrak{A}_f \times \mathfrak{A}_g \mid \pi_Y^f(x) = \mathfrak{E}_g^\star(y) \right\}.$$

Intuition: an element of $\mathfrak{A}_f \times_{\mathscr{O}(Y)} \mathfrak{A}_g$ consists of an open set $V \in \mathscr{O}(Z)$ together with some extra information α about V and some extra information about " $\mathfrak{E}_g^{\star}([V,\alpha])$ ".

Pullback



greatest continuous map satisfying

$$\pi_g^{f,g}\circ P_{f,g}=\pi_g^{f,g}.$$

Intuition: $P_{f,g}$ takes an open set $V \in \mathcal{O}(Z)$ with some extra information α about V and some extra information β about " $\mathfrak{E}_g^{\star}([V,\alpha])$ " and computes as much extra information β' as possible about " $\mathfrak{E}_g^{\star}([V,\alpha])$ ".

Composition

$$P_{f,g}: \mathfrak{A}_f \times_{\mathscr{O}(Y)} \mathfrak{A}_g \to \mathfrak{A}_f \times_{\mathscr{O}(Y)} \mathfrak{A}_g$$

greatest continuous map satisfying

$$\pi_g^{f,g}\circ P_{f,g}=\pi_g^{f,g}.$$

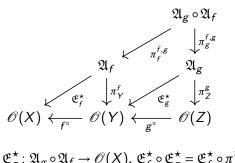
Composition

$$\mathfrak{A}_{g} \circ \mathfrak{A}_{f} = \{ \text{fixed points of } P_{f,g} \} / \sim$$

where $(x,y) \sim (x',y')$ iff $\pi_Z^g(y) = \pi_Z^g(y')$ and x = x'. Intuition:

- Take "maximal amounts of information" about open sets in Y
 computable from open subsets of Z with extra information.
- Identify those "bits of extra information" that yield the same open subset of Y and the same information about it.

Composition of Co-Envelopes



$$\mathfrak{E}_f^{\star} \bullet \mathfrak{E}_g^{\star} \colon \mathfrak{A}_g \circ \mathfrak{A}_f \to \mathcal{O}(X), \ \mathfrak{E}_f^{\star} \circ \mathfrak{E}_g^{\star} = \mathfrak{E}_f^{\star} \circ \pi_f^{f,g}$$

Facts about the Composition

- Letting \leq denote the tightening relation, if $\mathfrak{E}_{f,0}^{\star} \leq \mathfrak{E}_{f,1}^{\star}$ and $\mathfrak{E}_{g,0}^{\star} \leq \mathfrak{E}_{g,1}^{\star}$ then $\mathfrak{E}_{f,0}^{\star} \bullet \mathfrak{E}_{g,0}^{\star} \leq \mathfrak{E}_{f,1}^{\star} \bullet \mathfrak{E}_{g,1}^{\star}$.
- Composition is associative.
- For uniform envelopes, this composition is the same thing as composition in the Kleisli category of \mathcal{K}_1 .

Theorem

The following are equivalent:

• There exist continuous multi-valued functions $\omega_i : \subseteq X_i \times \mathbb{Q}_{>0} \Rightarrow \mathbb{Q}_{>0}$, with ω_1 total and

$$(x_i,\varepsilon) \in dom(\omega_i) \land x_{i+1} \in {}^{\dagger}f_i(x_i,\varepsilon) \to (x_{i+1},\varepsilon) \in dom(\omega_{i+1}),$$

such that for all sequences $x_1, ..., x_{n+1}$, $\delta_1 > 0, ..., \delta_n > 0$ satisfying $\delta_i \in \omega_i(x_i, \varepsilon)$ and $x_{i+1} \in {}^\dagger f_i(x_i, \delta_i)$ we have $d(x_{n+1}, f_n \circ \cdots \circ f_1(x)) < \varepsilon$.

The composition

$$\mathfrak{E}_{f_1}^{\star} \bullet \cdots \bullet \mathfrak{E}_{f_n}^{\star}$$

is the universal co-envelope of $f_n \circ \cdots \circ f_1$.

Main Open Problems

- We have two theorems connecting convergence of "approximate solutions" to composition of envelopes.
- There is a big "gap" between the two notions of convergence.
- How much can we close this gap? For example, can we find a notion of "approximate computation" that gives us stronger convergence in the setting of the second theorem?
- In the other direction, under which assumptions can we define the composition of envelopes, and reduce the situation to the first theorem?