CHAINS AND ANTICHAINS IN THE WEIHRAUCH DEGREES

Manlio Valenti

manlio.valenti@swansea.ac.uk

jww with Steffen Lempp and Alberto Marcone

Swansea University

CCA2024 July 13, 2024

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$

input: any $x \in dom(f)$ output: any $y \in f(x)$

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$

input: any $x \in dom(f)$ output: any $y \in f(x)$

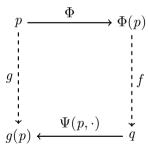
 $g \leq_{\mathrm{W}} f : \iff$ there are $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable such that

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$

input: any $x \in dom(f)$ **output**: any $y \in f(x)$

 $g \leq_{\mathbf{W}} f : \iff$ there are $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable such that

- Given $p \in dom(g)$, $\Phi(p) \in dom(f)$
- Given $q \in f(\Phi(p)), \Psi(p,q) \in g(p)$

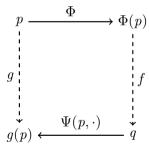


Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$

input: any $x \in dom(f)$ output: any $y \in f(x)$

 $g \leq_{\mathbf{W}} f : \iff$ there are $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computable such that

- Given $p \in dom(g)$, $\Phi(p) \in dom(f)$
- Given $q \in f(\Phi(p)), \Psi(p,q) \in g(p)$



More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.

Proposition (Pauly; Brattka, Gherardi)

The Weihrauch degrees are a distributive lattice with a bottom element but no top element.

Proposition (Pauly; Brattka, Gherardi)

The Weihrauch degrees are a distributive lattice with a bottom element but no top element.

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Proposition (Pauly; Brattka, Gherardi)

The Weihrauch degrees are a distributive lattice with a bottom element but no top element.

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Proposition (Pauly; Brattka, Gherardi)

The Weihrauch degrees are a distributive lattice with a bottom element but no top element.

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Bottom: (

Proposition (Pauly; Brattka, Gherardi)

The Weihrauch degrees are a distributive lattice with a bottom element but no top element.

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Bottom: (

The existence of a "natural" top element is equivalent to a (relatively weak) form of choice.

How about infinite join/meet?

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

Moreover, there is an infinite descending sequence $(g_n)_{n\in\mathbb{N}}$ in \mathcal{W} with no infimum.

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

Moreover, there is an infinite descending sequence $(g_n)_{n\in\mathbb{N}}$ in \mathcal{W} with no infimum.

Corollary (Higuchi, Pauly)

The Weihrauch degrees are not a \aleph_0 -complete join/meet semi-lattice.

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

Moreover, there is an infinite descending sequence $(g_n)_{n\in\mathbb{N}}$ in \mathcal{W} with no infimum.

Corollary (Higuchi, Pauly)

The Weihrauch degrees are not a \aleph_0 -complete join/meet semi-lattice.

Warning: the operations $\bigsqcup_{n\in\mathbb{N}} f_n$ and $\bigcap_{n\in\mathbb{N}} f_n$ are not degree-theoretic!

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

 $f \not\leq_{\mathbf{W}} g$ as $p' \not\leq_{T} p$, hence there is no computable Φ that map $\operatorname{dom}(f)$ to $\operatorname{dom}(g)$.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

 $f \not\leq_{\mathbf{W}} g$ as $p' \not\leq_{T} p$, hence there is no computable Φ that map $\operatorname{dom}(f)$ to $\operatorname{dom}(g)$.

We are heavily exploiting the complexity of the domain!

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

 $f \not\leq_{\mathbf{W}} g$ as $p' \not\leq_{T} p$, hence there is no computable Φ that map $\operatorname{dom}(f)$ to $\operatorname{dom}(g)$.

We are heavily exploiting the complexity of the domain!

Side note: we recently characterized the (strong) minimal covers in the Weihrauch lattice.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

 $f \not\leq_{\mathbf{W}} g$ as $p' \not\leq_{T} p$, hence there is no computable Φ that map $\operatorname{dom}(f)$ to $\operatorname{dom}(g)$.

We are heavily exploiting the complexity of the domain!

Side note: we recently characterized the (strong) minimal covers in the Weihrauch lattice.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

The Weihrauch degrees above id are dense.

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B : \iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$
$$\iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$$

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B : \iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$
$$\iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$$

The lower A is in the Medvedev degrees, the easier it is to uniformly compute an element of A.

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B : \iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$

 $\iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$

The lower A is in the Medvedev degrees, the easier it is to uniformly compute an element of A.

Muchnik reducibility: non-uniform version of \leq_{M}

$$(\forall b \in B)(\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(b) \in A)$$

"The first half of a Weihrauch reduction is a Medvedev reduction".

$$g \leq_{\mathcal{W}} f \Rightarrow \operatorname{dom}(f) \leq_{\mathcal{M}} \operatorname{dom}(g)$$

"The first half of a Weihrauch reduction is a Medvedev reduction".

$$g \leq_{\mathcal{W}} f \Rightarrow \operatorname{dom}(f) \leq_{\mathcal{M}} \operatorname{dom}(g)$$

This suggests a way to embed the Medvedev degrees in the Weihrauch degrees.

"The first half of a Weihrauch reduction is a Medvedev reduction".

$$g \leq_{\mathbf{W}} f \Rightarrow \operatorname{dom}(f) \leq_{\mathbf{M}} \operatorname{dom}(g)$$

This suggests a way to embed the Medvedev degrees in the Weihrauch degrees.

For every $A \subseteq \mathbb{N}^{\mathbb{N}}$ consider

$$d_A \colon A \to \{0^{\mathbb{N}}\} := p \mapsto 0^{\mathbb{N}}$$

"The first half of a Weihrauch reduction is a Medvedev reduction".

$$g \leq_{\mathbf{W}} f \Rightarrow \operatorname{dom}(f) \leq_{\mathbf{M}} \operatorname{dom}(g)$$

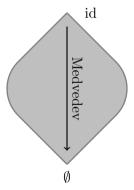
This suggests a way to embed the Medvedev degrees in the Weihrauch degrees.

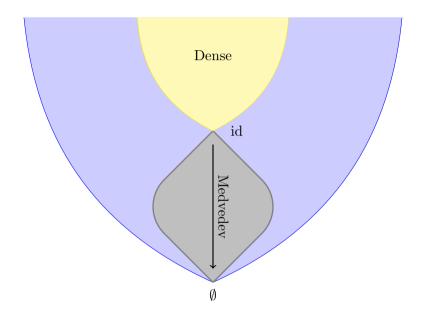
For every $A \subseteq \mathbb{N}^{\mathbb{N}}$ consider

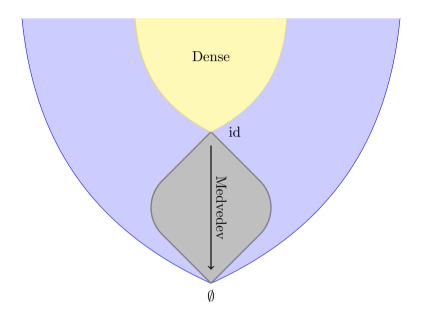
$$d_A \colon A \to \{0^{\mathbb{N}}\} := p \mapsto 0^{\mathbb{N}}$$

It follows that: $B \leq_{\mathbf{M}} A$ iff $d_A \leq_{\mathbf{W}} d_B$

This embedding reverses the Medvedev order!







Some results on the structure of Weihrauch degrees are obtained as corollaries of structural results on the Medvedev lattice.

Let \mathcal{M} and \mathcal{W} be the Medvedev and Weihrauch degrees resp. and let us write \mathcal{M}_0 for \mathcal{M} without the top element.

Let \mathcal{M} and \mathcal{W} be the Medvedev and Weihrauch degrees resp. and let us write \mathcal{M}_0 for \mathcal{M} without the top element.

Corollary (of Terwijn)

Under ZFC + $2^{<\mathfrak{c}} = \mathfrak{c}$, there is a chain of size $2^{\mathfrak{c}}$ in \mathcal{W} .

Let \mathcal{M} and \mathcal{W} be the Medvedev and Weihrauch degrees resp. and let us write \mathcal{M}_0 for \mathcal{M} without the top element.

Corollary (of Terwijn)

Under ZFC + $2^{<\mathfrak{c}} = \mathfrak{c}$, there is a chain of size $2^{\mathfrak{c}}$ in \mathcal{W} .

Proposition (Lempp, Marcone, V.)

There is a chain in \mathcal{M}_0 of order type ω_1 with no upper bound.

Let \mathcal{M} and \mathcal{W} be the Medvedev and Weihrauch degrees resp. and let us write \mathcal{M}_0 for \mathcal{M} without the top element.

Corollary (of Terwijn)

Under ZFC + $2^{<\mathfrak{c}} = \mathfrak{c}$, there is a chain of size $2^{\mathfrak{c}}$ in \mathcal{W} .

Proposition (Lempp, Marcone, V.)

There is a chain in \mathcal{M}_0 of order type ω_1 with no upper bound.

The proof can be adapted to show that

Corollary (Lempp, Marcone, V.)

There is a chain in W of order type ω_1 with no upper bound.

Let \mathcal{M} and \mathcal{W} be the Medvedev and Weihrauch degrees resp. and let us write \mathcal{M}_0 for \mathcal{M} without the top element.

Corollary (of Terwijn)

Under ZFC + $2^{<\mathfrak{c}} = \mathfrak{c}$, there is a chain of size $2^{\mathfrak{c}}$ in \mathcal{W} .

Proposition (Lempp, Marcone, V.)

There is a chain in \mathcal{M}_0 of order type ω_1 with no upper bound.

The proof can be adapted to show that

Corollary (Lempp, Marcone, V.)

There is a chain in W of order type ω_1 with no upper bound.

Is this peculiar of ω_1 ?

Theorem (Lempp, Marcone, V.)

For every cardinal $\kappa \leq \mathfrak{c}$ with $\operatorname{cof}(k) > \omega$, there is a chain $(f_{\alpha})_{\alpha < \kappa}$ in \mathcal{W} without upper bound.

Theorem (Lempp, Marcone, V.)

For every cardinal $\kappa \leq \mathfrak{c}$ with $\operatorname{cof}(k) > \omega$, there is a chain $(f_{\alpha})_{\alpha < \kappa}$ in \mathcal{W} without upper bound.

This follows from the following characterization:

Theorem (Lempp, Marcone, V.)

For every cardinal $\kappa \leq \mathfrak{c}$ with $\operatorname{cof}(k) > \omega$, there is a chain $(f_{\alpha})_{\alpha < \kappa}$ in \mathcal{W} without upper bound.

This follows from the following characterization:

Let $(f_{\alpha})_{\alpha<\beta}$ be a chain and $E\subseteq\beta$. For $p\in\mathbb{N}^{\mathbb{N}}$, define

$$I_p^E := \{ \alpha \in E : p \in \text{dom}(f_\alpha) \}$$

Theorem (Lempp, Marcone, V.)

For every cardinal $\kappa \leq \mathfrak{c}$ with $\operatorname{cof}(k) > \omega$, there is a chain $(f_{\alpha})_{\alpha < \kappa}$ in \mathcal{W} without upper bound.

This follows from the following characterization:

Let $(f_{\alpha})_{\alpha<\beta}$ be a chain and $E\subseteq\beta$. For $p\in\mathbb{N}^{\mathbb{N}}$, define

$$I_p^E := \{ \alpha \in E : p \in \text{dom}(f_\alpha) \}$$

Theorem (Lempp, Marcone, V.)

Let κ be a cardinal with $\operatorname{cof}(\kappa) > \omega$, and let $(f_{\alpha})_{{\alpha} < \kappa}$ be a chain of order type κ . TFAE:

- 1. $(f_{\alpha})_{\alpha < \kappa}$ has an upper bound in \mathcal{W} ;
- 2. there is $E \subseteq \kappa$ with $|E| = \kappa$ s.t. for every $p \in \bigcup_{\alpha \in E} \text{dom}(f_{\alpha}), \bigcap_{\alpha \in I_{p}^{E}} f_{\alpha}(p) \neq \emptyset$

A chain \mathcal{C} is cofinal in a poset \mathcal{P} if every element of \mathcal{P} is below some element of \mathcal{C} .

A chain \mathcal{C} is cofinal in a poset \mathcal{P} if every element of \mathcal{P} is below some element of \mathcal{C} .

Proposition (Exercise)

Let \mathcal{T} denote the Turing degrees. The following are equivalent:

- CH;
- There is a cofinal chain in \mathcal{T} (of order type ω_1).

A chain \mathcal{C} is cofinal in a poset \mathcal{P} if every element of \mathcal{P} is below some element of \mathcal{C} .

Proposition (Exercise)

Let \mathcal{T} denote the Turing degrees. The following are equivalent:

- CH;
- There is a cofinal chain in \mathcal{T} (of order type ω_1).

The same result holds for the Medvedev degrees.

Theorem (Lempp, Marcone, V.)

The following are equivalent

- 1. CH;
- 2. There is a cofinal chain in \mathcal{M}_0 (of order type ω_1).

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in W and the set-cofinality is > c.

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in W and the set-cofinality is > c.

Lemma (Lempp, Marcone, V.)

For every $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of multi-valued functions, there is g such that for every $p,\ g\not\leq_{\mathbf{W}} f_p$.

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in W and the set-cofinality is > c.

Lemma (Lempp, Marcone, V.)

For every $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of multi-valued functions, there is g such that for every $p,\ g\not\leq_{\mathbf{W}} f_p$.

Proof (of the Theorem)

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in W and the set-cofinality is > c.

Lemma (Lempp, Marcone, V.)

For every $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of multi-valued functions, there is g such that for every $p,\ g\not\leq_{\mathbf{W}} f_p$.

Proof (of the Theorem)

Let $(f_{\alpha})_{\alpha<\kappa}$ be a cofinal chain, with κ regular. By the lemma, $\kappa>\mathfrak{c}$.

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in W and the set-cofinality is > c.

Lemma (Lempp, Marcone, V.)

For every $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of multi-valued functions, there is g such that for every $p,\ g\not\leq_{\mathbf{W}} f_p$.

Proof (of the Theorem)

Let $(f_{\alpha})_{{\alpha}<\kappa}$ be a cofinal chain, with κ regular. By the lemma, $\kappa > \mathfrak{c}$. Let $(g_{\beta})_{{\beta}<\omega_1}$ be a chain with no upper bound.

COFINALITY

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in W and the set-cofinality is > c.

Lemma (Lempp, Marcone, V.)

For every $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of multi-valued functions, there is g such that for every p, $g\not\leq_{\mathbf{W}} f_p$.

Proof (of the Theorem)

Let $(f_{\alpha})_{\alpha<\kappa}$ be a cofinal chain, with κ regular. By the lemma, $\kappa>\mathfrak{c}$.

Let $(g_{\beta})_{\beta<\omega_1}$ be a chain with no upper bound. For each β , there is α_{β} such that $g_{\beta}\leq_W f_{\alpha_{\beta}}$.

COFINALITY

The **set-cofinality** of a poset \mathcal{P} is the size of the smallest $Q \subseteq \mathcal{P}$ such that every element of \mathcal{P} is below some element of Q.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in W and the set-cofinality is $> \mathfrak{c}$.

Lemma (Lempp, Marcone, V.)

For every $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of multi-valued functions, there is g such that for every p, $g\not\leq_{\mathbf{W}} f_p$.

Proof (of the Theorem)

Let $(f_{\alpha})_{\alpha < \kappa}$ be a cofinal chain, with κ regular. By the lemma, $\kappa > \mathfrak{c}$.

Let $(g_{\beta})_{\beta<\omega_1}$ be a chain with no upper bound. For each β , there is α_{β} such that $g_{\beta} \leq_{\mathbf{W}} f_{\alpha_{\beta}}$. Since $k = \operatorname{cof}(k) > \omega_1$,

$$\sup \{ \alpha_{\beta} : \beta < \omega_1 \} = \gamma < k,$$

hence f_{γ} is an upper bound for $(g_{\beta})_{\beta < \omega_1}$. Contradiction.

Antichains in ${\mathcal M}$ and ${\mathcal W}$

Proposition (essentially Sorbi, Platek)

There are maximal antichains in \mathcal{M} of size κ , for every $1 \leq \kappa \leq \mathfrak{c}$ or $\kappa = 2^{\mathfrak{c}}$.

Antichains in $\mathcal M$ and $\mathcal W$

Proposition (essentially Sorbi, Platek)

There are maximal antichains in \mathcal{M} of size κ , for every $1 \leq \kappa \leq \mathfrak{c}$ or $\kappa = 2^{\mathfrak{c}}$.

This does not generalize to Weihrauch degrees!

Proposition (Dzhafarov, Lerman, Patey, Solomon)

For every countable family $\{f_n\}_{n\in\mathbb{N}}$ of non-trivial problems there is g s.t. for every n, $g\mid_{\mathbf{W}} f_n$. In particular, every countable antichain is extendible.

The result by (DLPS) cannot be extended to $\mathfrak{c}\text{-sized}$ families:

Proposition (Lempp, Marcone, V.)

There is a family $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of non-trivial problems s.t. $g\neq\emptyset$ there is $p\in\mathbb{N}^{\mathbb{N}}$ s.t. $f_p\leq_{\mathrm{W}} g$.

The result by (DLPS) cannot be extended to $\mathfrak{c}\text{-sized}$ families:

Proposition (Lempp, Marcone, V.)

There is a family $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of non-trivial problems s.t. $g\neq\emptyset$ there is $p\in\mathbb{N}^{\mathbb{N}}$ s.t. $f_p\leq_{\mathrm{W}} g$.

Unfortunately, the above family cannot be refined to a maximal continuum-sized antichain!

Theorem (Lempp, Marcone, V.)

If $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is an antichain in \mathcal{W} s.t. $\{\operatorname{dom}(f_p)\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is not cofinal in \mathcal{M}_0 , then it is not maximal.

The result by (DLPS) cannot be extended to \mathfrak{c} -sized families:

Proposition (Lempp, Marcone, V.)

There is a family $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of non-trivial problems s.t. $g\neq\emptyset$ there is $p\in\mathbb{N}^{\mathbb{N}}$ s.t. $f_p\leq_{\mathrm{W}} g$.

Unfortunately, the above family cannot be refined to a maximal continuum-sized antichain!

Theorem (Lempp, Marcone, V.)

If $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is an antichain in \mathcal{W} s.t. $\{\operatorname{dom}(f_p)\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is not cofinal in \mathcal{M}_0 , then it is not maximal.

Proof (Sketch)

Fix $A \subseteq \mathbb{N}^{\mathbb{N}}$ s.t. for every $p \in \mathbb{N}^{\mathbb{N}}$, $A \nleq_{\mathbb{M}} \operatorname{dom}(f_p)$. W.l.o.g. we can assume $|A| = \mathfrak{c}$.

The result by (DLPS) cannot be extended to \mathfrak{c} -sized families:

Proposition (Lempp, Marcone, V.)

There is a family $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of non-trivial problems s.t. $g\neq\emptyset$ there is $p\in\mathbb{N}^{\mathbb{N}}$ s.t. $f_p\leq_{\mathrm{W}} g$.

Unfortunately, the above family cannot be refined to a maximal continuum-sized antichain!

Theorem (Lempp, Marcone, V.)

If $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is an antichain in \mathcal{W} s.t. $\{\operatorname{dom}(f_p)\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is not cofinal in \mathcal{M}_0 , then it is not maximal.

Proof (Sketch)

Fix $A \subseteq \mathbb{N}^{\mathbb{N}}$ s.t. for every $p \in \mathbb{N}^{\mathbb{N}}$, $A \not\leq_{\mathbb{M}} \operatorname{dom}(f_p)$. W.l.o.g. we can assume $|A| = \mathfrak{c}$.

We define a function g with dom(g) := A. This already guarantees that $f_p \not\leq_{\mathbf{W}} g$.

The result by (DLPS) cannot be extended to \mathfrak{c} -sized families:

Proposition (Lempp, Marcone, V.)

There is a family $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ of non-trivial problems s.t. $g\neq\emptyset$ there is $p\in\mathbb{N}^{\mathbb{N}}$ s.t. $f_p\leq_{\mathrm{W}} g$.

Unfortunately, the above family cannot be refined to a maximal continuum-sized antichain!

Theorem (Lempp, Marcone, V.)

If $\{f_p\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is an antichain in \mathcal{W} s.t. $\{\operatorname{dom}(f_p)\}_{p\in\mathbb{N}^{\mathbb{N}}}$ is not cofinal in \mathcal{M}_0 , then it is not maximal.

Proof (Sketch)

Fix $A \subseteq \mathbb{N}^{\mathbb{N}}$ s.t. for every $p \in \mathbb{N}^{\mathbb{N}}$, $A \not\leq_{\mathrm{M}} \mathrm{dom}(f_p)$. W.l.o.g. we can assume $|A| = \mathfrak{c}$.

We define a function g with dom(g) := A. This already guarantees that $f_p \not\leq_W g$.

For the other direction, we define g so that $g((e,i)^{\hat{}}p)$ witnesses that $g \not\leq_W f_p$ via Φ_e, Φ_i .

Since the set-cofinality of \mathcal{M}_0 is \mathfrak{c} :

Corollary (Lempp, Marcone, V.)

No antichain $\{f_{\alpha}\}_{{\alpha}<\kappa}$ in ${\mathcal W}$ with ${\kappa}<{\mathfrak c}$ is maximal.

Since the set-cofinality of \mathcal{M}_0 is \mathfrak{c} :

Corollary (Lempp, Marcone, V.)

No antichain $\{f_{\alpha}\}_{{\alpha}<\kappa}$ in ${\mathcal W}$ with ${\kappa}<{\mathfrak c}$ is maximal.

Since no antichain in \mathcal{M}_0 is cofinal:

Corollary (Lempp, Marcone, V.)

If $\{f_{\alpha}\}_{{\alpha}<\kappa}$ is an antichain in \mathcal{W} s.t. $\{\operatorname{dom}(f_{\alpha})\}_{{\alpha}< k}$ is an antichain in \mathcal{M}_0 , then $\{f_{\alpha}\}_{{\alpha}<\kappa}$ is not maximal.

Since the set-cofinality of \mathcal{M}_0 is \mathfrak{c} :

Corollary (Lempp, Marcone, V.)

No antichain $\{f_{\alpha}\}_{{\alpha}<\kappa}$ in ${\mathcal W}$ with ${\kappa}<{\mathfrak c}$ is maximal.

Since no antichain in \mathcal{M}_0 is cofinal:

Corollary (Lempp, Marcone, V.)

If $\{f_{\alpha}\}_{{\alpha}<\kappa}$ is an antichain in \mathcal{W} s.t. $\{\operatorname{dom}(f_{\alpha})\}_{{\alpha}< k}$ is an antichain in \mathcal{M}_0 , then $\{f_{\alpha}\}_{{\alpha}<\kappa}$ is not maximal.

Are there maximal antichains of size \mathfrak{c} in \mathcal{W} ?

REFERENCES

- [1] Brattka, Vasco, Gherardi, Guido, and Pauly, Arno, Weihrauch Complexity in Computable Analysis, pp. 367–417, Springer International Publishing, Jul 2021, doi:10.1007/978-3-030-59234-9_11.
- [2] Higuchi, Kojiro and Pauly, Arno, *The degree structure of Weihrauch reducibility*, Logical Methods in Computer Science **9** (2013), no. 2:02, 1–17, doi:10.2168/LMCS-9(2:02)2013.
- [3] Lempp, Steffen, Miller, Joseph S., Pauly, Arno, Soskova, Mariya I., and Valenti, Manlio, *Minimal covers in the Weihrauch degrees*, Proceedings of the American Mathematical Society (to appear), Available at https://arxiv.org/abs/2311.12676.
- [4] Sorbi, Andrea, *The Medvedev Lattice of Degrees of Difficulty*, Computability, Enumerability, Unsolvability (Cooper, S. B., Slaman, T. A., and Wainer, S. S., eds.), Cambridge University Press, New York, NY, USA, 1996, pp. 289–312.
- [5] Terwijn, Sebastiaan A., On the Structure of the Medvedev Lattice, The Journal of Symbolic Logic 73 (2008), no. 2, 543–558.

Minimal degrees and minimal covers

In a poset, **a** is a **minimal cover** of **b** if $\{c : b < c < a\} = \emptyset$. **a** is a **strong minimal cover** of **b** if for every **c**, **c** < **a** implies **c** \leq **b**.

Minimal degrees and minimal covers

In a poset, \mathbf{a} is a minimal cover of \mathbf{b} if $\{\mathbf{c}: \mathbf{b} < \mathbf{c} < \mathbf{a}\} = \emptyset$. \mathbf{a} is a strong minimal cover of \mathbf{b} if for every \mathbf{c} , $\mathbf{c} < \mathbf{a}$ implies $\mathbf{c} \le \mathbf{b}$.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees.
- 2. $h \equiv_{\mathbf{W}} \mathrm{id}_{p+}$ and $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ for some $p \in \mathbb{N}^{\mathbb{N}}$.

Minimal degrees and minimal covers

In a poset, **a** is a **minimal cover** of **b** if $\{c : b < c < a\} = \emptyset$. **a** is a **strong minimal cover** of **b** if for every **c**, **c** < **a** implies **c** \leq **b**.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees.
- 2. $h \equiv_{\mathbf{W}} \mathrm{id}_{p+}$ and $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ for some $p \in \mathbb{N}^{\mathbb{N}}$.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

The following are equivalent for a Weihrauch degree q:

- 1. id $\not\leq_{\mathrm{W}} g$
- 2. There are $g \leq_{\mathbf{W}} h <_{\mathbf{W}} f$ such that (h, f) is an empty interval.

