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Analysing Turing degree over intuititionistic logic

Takako Nemoto

Graduate School of Information Sciences, Tohoku University

It is known that a basic part of recursion theory (cf. [1]), such as recursion theory, smn-theorem, recursion
theorem and normal form theorem can be formalized in HA [2, Ch.3.7]. But how advance we can develop
recursion theory over intuitionistic logic?

In this talk, we analyze, over an intuitionistic system, what non-constructive principles and induction
principles are enough to show some properties of the Turing degree, including the existence of simple sets,
simple and low sets, two incomparable degrees, and so on.

References

[1] R. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1987.

[2] A.Troelstra and D. van Dalen, Constructivism in Mathematics Volumes I, Studies in Logic and the
Foundations of Mathematics, Elsevier, 1988.
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Comparing relative information content

Selwyn Ng
Nanyang Technological University

Abstract

The notion of a Turing reduction is one of the central notions in
computability theory. The robustness of this notion means that it
provides the standard tool for analysing the algorithmic content of
different objects. However there are different reducibilities which may
be more suitable in a different setting. We will discuss several - perhaps
less well-known - reducibilites and some survey recent results about
them.

1
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TLPP and its Surroundings

Yudai Suzuki
National Institute of Technology, Oyama College

Abstract

Towsner’s transfinite leftmost path principle TLPP plays a central
role to study the complexity of theorems whose complexity lies between
ATR0 and Π1

1-CA0 in the context of reverse mathematics. In this talk,
I will consider some theorems related to TLPP from the point of view
of reverse mathematics and computability-theoretic reductions.

1

CCA 2025 Kyoto — Abstracts 6/34



▶ PATRICK UFTRING, Computable transformations of Turing degrees.
University of the Bundeswehr Munich, Department of Computer Science, Werner-
Heisenberg-Weg 39 85579 Neubiberg, Germany.
E-mail: patrick.uftring@unibw.de.

Following a conjecture by Vasco Brattka, we present a new result that fully charac-
terizes all partial, multi-valued functions on the Turing degrees that have computable
realizers. To be precise, for any n-ary such function f : Dn ⇒ D, there is a set
N ⊆ n such that

∨
i∈N ai ∈ f(a0, . . . ,an−1) holds for any tuple of Turing degrees

(a0, . . . ,an−1) ∈ dom(f). This yields short proofs of established results such as [2,
Proposition 11.5] (“The inverse of the Turing jump is not computable.”) but also
answers open questions such as “Are two applications of PA reducible to a single in-
stance?” (private communication with Vasco Brattka, cf. [1, Proposition 38]). We
also present an infinitary variant, which can e.g. be applied to Weihrauch reductions
involving infinite suborders of Turing degrees and answers [1, Conjecture 37].

[1] Vasco Brattka, Loops, Inverse Limits and Non-Determinism,
arXiv:2501.17734, pp. 1–18.

[2] Vasco Brattka, Matthew Hendtlass, Alexander P. Kreuzer, On the
Uniform Computational Content of Computability Theory, Theory of Computing
Systems, vol. 61 (2017), no. 4, pp. 1376–1426.
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▶ THIBAUT KOUPTCHINSKY, The reverse mathemtaics of analytic measurability..
Computational Logic, TU Wien, Wiedner Hauptstraße 8-10/104-02 1040 Wien, Aus-
tria.
E-mail: thibaut.kouptchinsky@tuwien.ac.at.

This talk is about a work in progress with Juan Aguilera (TU Wien) and Keita Yoko-
hama (Tohoku University) on the foundations of mathematics, studying measurability
of Σ1

1 set, with the method of random forcing. Reverse Mathematics is the branch
of Mathematical Logic which studies the question: “given a mathematical theorem
ϕ, which axioms are necessary to prove ϕ?”, therefore providing a comparison of the
theorems of mathematics according to some measure of their provability strength (see
[2]).

We study a theorem of Lusin [1], which stated that all analytical set of reals are
Lebesgue-measurable. We work in the framework of second-order arithmetic. Yu [4]
showed that assuming transfinite recursion, ATR0 is sufficient (and necessary) to prove
that λ(A) exists for all Borel sets A, coded as wellfounded trees on natural numbers.
Simpson [2] asked whether ATR0 “suffices to prove measurability and regularity of
analytic sets in some appropriate sense.” The purpose of our work is to answer this
question.

The following is our main theorem:

Theorem 1. The following are equivalent over ATR0.

1. All analytic sets A ⊂ [0, 1] are Lebesgue-regular; and
2. Σ1

1-Induction for N.

In addition to answering Simpson’s question, Theorem 1 presents a reversal of a
theorem to Σ1

1-Induction. We do not know of any other theorem from core mathematics
equivalent to this theory.

Theorem 1 deals with Lebesgue-regularity, i.e., the equality of the outer and inner
measures. If one additionally demands that this value exist as a number, the strength
of Lusin’s theorem increases:

Theorem 2. The following are equivalent over ATR0.

1. All analytic sets A ⊂ [0, 1] are Lebesgue-measurable; and
2. Π1

1-Comprehension.

The main idea is to draw inspiration from Solovay’s [3] construction of a model
of Zermelo-Fraenkel set theory where every set is Lebesgue measurable. In our case
the forcing argument is carried out over a non-standard model of a weak set theory
(obtained through the familiar method of pseudohierarchies). The main subtle point
is the use of Σ1

1-Induction to guarantee that the forcing provides enough information
about a given analytic set A to conclude that λ∗(A) = λ∗(A).

[1] N. Lusin., Sur la classification de M. Baire., Com. Ren. Acad. Sci. Paris
164:91–94, 1917.

[2] S. G. Simpson, Subsystems of second order arithmetic (Second edition),
Perspectives in Logic, Association for Symbolic Logic, 2009.

[3] R. Solovay, A model of set theory in which every set of reals is Lebesgue mea-
surable Ann. Math. 92(1):1–56, 1970.

[4] X. Yu, Riesz representation theorem, Borel measures and subsystems of second-
order arithmetic Annals of Pure and Applied Logic 59(1):64–78, 1993.
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PSPACE-completeness of the reachability

relation of robust dynamical systems

Manon Blanc

IT-Universitet i København

Dynamical systems are widely used in many areas of fundamental and ap-
plied science. Their interactions with computations over the reals have led to
numerous works, with various motivations. One of the primary challenges in
dynamical systems is the problem of reachability: can a point y be reached from
x? This decision problem is well-known to be computably enumerable but not
co-computably enumerable, so it is not decidable in the general case. However,
with a proper notion of stability, i.e. robustness as defined in [1], the reachabil-
ity relation becomes decidable. Intuitively, it can be understood as insensitivity
to an arbitrarily small perturbation. Instead of sending one point to another
point, the perturbed dynamic function sends one point to an open set. A sys-
tem is robust if and only if each of those open sets intersects the non-perturbed
solution point.

The authors of [3] proved we can go a bit further, and deal with questions of
complexity. The idea of their paper is that with the proper quantification over
the allowed perturbation, namely the radius of the open sets is 2−p(n) with p
a polynomial and n ∈ N related to some notion of size, we can prove that the
reachability relation is in PSPACE.

Also, we are interested in complexity classes working over the real numbers
and properly defining our model of computation. Many different models exist
for real numbers. For discrete-time models of computations over the reals, we
consider here computable analysis, based on the Turing machine model in [7] and
[9]. Using this framework, the authors of [2] prove it is possible to have algebraic
characterisations of PTIME and PSPACE, relying on discrete ODEs.

For continuous time models, one of the first machines is the first-ever built
computer, such as the Differential Analysers [8]. It was mathematically for-
malised by the General Purpose Analog Computer (GPAC) model of Claude
Shannon [6]. Going back to Turing machines, the authors of [4] prove it is
possible to have algebraic characterisations of PSPACE, relying on continu-
ous ODEs. In [5], the authors even have a PSPACE-completeness result, by
restricting themselves to compact domains.

Contributions. There exist PSPACE-completeness results, for PSPACE
over the reals, but in the case where the domain of the functions are compact
sets, as in [5]. We prove a PSPACE-completeness property for (not necessarily)
bounded real domain.

We prove that PSPACE-completeness in the framework of [2], where the
domain of our dynamical systems is included in Q and is robust, with a proper
notion of robustness. We also show here that, with a proper notion of robustness

1
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for a particular kind of Turing machines, namely Type-2 machines, and second-
order reductions over real functions, as defined in [5], we have the PSPACE2-
≤2

m-completeness of the reachability relation. We are no longer in the previous
framework, allowing us to deal with somewhat more general dynamic functions.

References

[1] Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hy-
brid systems. In Proceedings of the 16th Annual IEEE Symposium on Logic
in Computer Science (LICS-01), pages 269–278, Los Alamitos, CA, June 16–
19 2001. IEEE Computer Society Press.

[2] Manon Blanc and Olivier Bournez. A Characterisation of Functions Com-
putable in Polynomial Time and Space over the Reals with Discrete Or-
dinary Differential Equations: Simulation of Turing Machines with An-
alytic Discrete ODEs. In 48th International Symposium on Mathemati-
cal Foundations of Computer Science (MFCS 2023), volume 272 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 21:1–21:15,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. doi:10.4230/LIPIcs.MFCS.2023.21.

[3] Manon Blanc and Olivier Bournez. Quantifiying the Robustness of Dynam-
ical Systems. Relating Time and Space to Length and Precision. In 32nd
EACSL Annual Conference on Computer Science Logic (CSL 2024), vol-
ume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages
17:1–17:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.CSL.2024.17.

[4] Manon Blanc and Olivier Bournez. The Complexity of Computing in Contin-
uous Time: Space Complexity Is Precision. In 51st International Colloquium
on Automata, Languages, and Programming (ICALP 2024), volume 297
of Leibniz International Proceedings in Informatics (LIPIcs), pages 129:1–
129:22, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ICALP.2024.129.

[5] Akitoshi Kawamura and Stephen A. Cook. Complexity theory for operators
in analysis. ACM Trans. Comput. Theory, 4(2):5:1–5:24, 2012. doi:10.

1145/2189778.2189780.

[6] Claude E. Shannon. Mathematical theory of the differential analyser. Jour-
nal of Mathematics and Physics MIT, 20:337–354, 1941.

[7] Alan Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42(2):230–
265, 1936. Reprinted in Martin Davis. The Undecidable: Basic Papers on
Undecidable Propositions, Unsolvable Problems and Computable Functions.
Raven Press, 1965.
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Non-deterministic analogue computations with
ODEs: Towards a characterisation of NP

Olivier Bournez and Jacques Dreyfus

Ecole Polytechnique & Laboratory LIX
Institut Polytechnique of Paris

91128 Palaiseau Cedex
France

In 1941, Claude Shannon introduced in [12] a model of analogue computa-
tion, the GPAC (general purpose analogue computer). This was proposed as a
mathematical model of (mechanical) analogue computers of that time, namely
differential analysers. In this model, we can compose basic blocs (constants, ad-
ditions, multiplications, integrators) into circuits (feedbacks are allowed) in order
to compute functions. A GPAC can also be thought of as computing solutions
of polynomial initial value problems (PIVPs), a particular class of ordinary dif-
ferential equations. A characterisation in that direction was obtained in [5]. In
terms of computability, it was first thought to be a less powerful model than the
Turing machine model, but it is now regarded as equivalent, as long as we use
a coherent definition of computation for this model, following [3]. In practice,
from strong closure properties, it can be considered as a model of any (old or
modern) analogue computing device.

The question of complexity was addressed only recently by [11,4], who proved
that the time complexity of the computation corresponded to the length of the
curve of the solution of the ODE associated with the GPAC. More precisely, a real
function is computable if and only if it is computable by a GPAC of polynomial
length [11,4]. Very recently, it was also proved that space corresponds to precision
[1,2]. All these results, providing analogue characterisations of P, and PSPACE
at the end, were obtained by proving both that Turing machines computations
could be simulated by various classes of ordinary differential equations in one
direction, and arguments from computable analysis in the other direction. In
particular, the statement about the time complexity is highly based on the fact
that there is a way to solve ordinary differential equations in a time that is
polynomial in the length of the solution.

In the more traditional computable analysis approach, the complexity of solv-
ing ODEs has been investigated by many works [8,9,10,6]. Concerning analytic
functions, the work by [13,7] showed that we could compute solutions of slightly
more general problems than PIVPs, namely IVPs with analytic right-hand sides.
The approach is based on parametrised complexity, where some parameters are
assumed to be encoded in unary, while others have their usual representation
in binary [13,7]. There, the length of the curve was not used, but instead spe-
cific parametric representations that would give the information needed to make
evaluation and ODE-solving polynomial-time computable. These representations
each consist of a way to represent the analytic function itself (by an approxima-
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tion of the function or by the coefficients of the associated series) and of some
bounds on natural quantities, which can be interpreted as radii of convergence,
that make the operations that we want to perform polynomial-time computable.
As noticed by both authors, the (parametrised) algorithms that they proposed
have similarities, even if both admit that this requires more investigation.

One first outcome of this work is to explain the relations between both. More
generally, the goal of the present work is motivated by extending previous state-
ments about analogue computations, in order to deal with non-determinism: can
we provide a characterisation of the NP class, using ordinary differential equa-
tions in the spirit of the above analogue characterisations of P and PSPACE?
Concretely, an idea is that by adding a discrete parameter in a discrete-time
system, one can simulate non-determinism: a non-deterministic computation
succeeds if the computation succeeds for some value of the parameter, which
means performing an existential quantification on the parameter. This provides
one of the directions. Conversely, the idea is that by using approximation theory
by analytic functions and even polynomials, one can add such a parameter in
a continuous-time system, and under some conditions, the good behaviour and
complexity are preserved. If this idea is simple, the deep key point is to iden-
tify the class of allowed functions or dynamics that may be authorised in the
quantification, in order to remain in the class NP.

The proposed work identifies a suitable class of such dynamics. We unify the
parameters from [13] (the radius of convergence over the reals and a bound for the
first representation, the size of a subdomain over the complex and another bound
for the second one) and the length from [11] to get a better understanding of the
quantity that we have to bound to guarantee polynomial-time computability.
As another side effect, we also identify the role played by absolute continuity in
involved reasoning and representations.

This work corresponds to the master’s thesis of the second author (in alpha-
betical order). His report will be available on: https://www.lix.polytechnique.
fr/~bournez/CCA2025/ as soon as possible. A preliminary version (in French)
is already available at this url.
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COMPUTABLE BASES

VASCO BRATTKA AND EMMANUEL RAUZY

Abstract. In computable analysis typically topological spaces with countable

bases are considered. The Theorem of Kreitz-Weihrauch implies that the sub-

base representation of a second-countable T0 space is admissible with respect
to the topology that the subbase generates. We consider generalizations of

this setting to bases that are representable, but not necessarily countable. We

introduce the notions of a computable presubbase and a computable prebase.
We prove a generalization of the Theorem of Kreitz-Weihrauch for the presub-

base representation that shows that any such representation is admissible with

respect to the topology generated by compact intersections of the presubbase
elements. For computable prebases we obtain representations that are admis-

sible with respect to the sequentialization of the topology that they generate.

These concepts provide a natural way to investigate many topological spaces
that are studied in computable analysis.

1. Summary

We start with defining the concept of a presubbase.

Definition 1.1 (Presubbase). Let X be a set. We call a family (By)y∈Y a presub-
base for X, if Y is a represented space and its transpose

BT : X → O(Y ), x 7→ {y ∈ Y : x ∈ By}
is well-defined and injective.

Injectivity of BT implies that (By)y∈Y is a subbase of some T0 topology on
X. We note that every countable subbase B : N → O(X) of a T0 topology is
a particular instance of a presubbase, as BT : X → O(N) is always well-defined.
Hence, the following definition generalizes the concept of a subbase representation
as it is known in computable analysis [Wei00].

Definition 1.2 (Presubbase representation). Let (By)y∈Y be a presubbase of a set
X. We define the presubbase representation δB :⊆ NN → X by

δB(p) = x :⇐⇒ δO(Y )(p) = {y ∈ Y : x ∈ By}
for all p ∈ NN and x ∈ X.

The reason that we speak about a presubbase representation in this general situ-
ation and not about a subbase representation is that δB is not necessarily admissible
with respect to the topology generated by (By)y∈Y . However, it is admissible with
respect to a closely related topology generated by compact intersections of the sets
By, as shown in the next theorem. We call a represented space X a computable Kol-
mogorov space if its neighborhood map U : X → OO(X), x 7→ {U ∈ O(X) : x ∈ U}
is a computable embedding. This is the natural effectivization of the T0 property
(that is sometimes called computable admissibility) [Sch02, Sch21].

Theorem 1.3 (Presubbase theorem). Let (By)y∈Y be a presubbase of a set X.
Then (X, δB) is a computable Kolmogorov space and δB is admissible with respect
to the topology τ on X with the base sets X and

⋂
y∈K By for every compact K ⊆ Y .

1
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2 VASCO BRATTKA AND EMMANUEL RAUZY

We note that this result generalizes the Theorem of Kreitz-Weihrauch [KW85] as
for countable subbases B : N→ O(X) the compact subsets K ⊆ N are exactly the
finite subsets and hence the topology generated by X and

⋂
n∈K Bn for compact

K ⊆ N is exactly the same topology as the topology generated by the subbase B
itself. We can now define the notion of a computable presubbase.

Definition 1.4 (Computable presubbase). Let X and Y be represented spaces.
Then B : Y → O(X) is called a computable presubbase of X if the transpose

BT : X → O(Y ), x 7→ {y ∈ Y : x ∈ By}
is well-defined and a computable embedding.

Obviously, a presubbase B of X is a computable presubbase of X if and only if
the representation of X is computably equivalent to δB . In analogy to the countable
case [BR25] we can now define the concept of a computable base.

Definition 1.5 (Computable prebase). Let X a represented space with a com-
putable presubbase B : Y → O(X). Then B is called a computable prebase of X,
if there is a computable R : K−(Y ) ⇒ A+(Y ) such that

⋂
y∈K By =

⋃
y∈ABy for

every K ∈ K−(Y ) and A ∈ R(K) and X =
⋃

y∈Y By. We call B a computable base
of X if B is actually a base of X

By Theorem 1.3 computable prebases characterize the topology of their spaces
up to sequentialization, which one can see using results of Schröder [Sch02]. In fact,
every computable Kolmogorov space has a computable base, namely the identity.
Altogether, we obtain the following characterization of computable Kolmogorov
spaces in terms of their bases.

Theorem 1.6 (Computable Kolmogorov spaces and bases). Let X be a represented
space X. Then the following are pairwise equivalent:

(1) X is a computable Kolmogorov space,
(2) X has a computable presubbase,
(3) X has a computable prebase,
(4) X has a computable base,
(5) id : O(X)→ O(X) is a computable base of X.
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Speedability of computably approximable reals and
their approximations

Nan Fang

Abstract
Given a computable approximation {as}s∈ω to a real α, we say the approxima-
tion is speedable if there exists a computable function f such that the modified
approximation {af(s)}s∈ω converges faster than {as}s∈ω. This leads to vari-
ous notions of speedability for computably approximable reals, depending on
the speedability of their computable approximations, and the computational
complexity of the reals as well.

Left/right-c.e. reals are those with nondecreasing/nonincreasing computable
approximations, respectively; d.c.e. reals are differences of two left-c.e. reals;
and computably approximable reals are those that admit a computable approx-
imation. In this talk, we examine speedability notions in the context of these
different classes of reals. Previous work by Merkle and Titov established the
equivalence of several speedability notions for left-c.e. reals. For right-c.e. reals,
the situation is symmetrical. We extend these results to d.c.e. reals, show-
ing that the various notions of speedability coincide in this broader setting as
well. Moreover, we prove that for d.c.e. reals, being speedable is equivalent
to not being Martin-Löf random. Finally, for the general class of computably
approximable reals, we show that every such real admits at least one speedable
computable approximation.

This is joint work with George Barmpalias, Wolfgang Merkle, and Ivan Titov.
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DedekindCutArithmetic.jl: A Julia
implementation of exact real arithmetic based

on Dedekind cuts
Luca Ferranti, Aalto University

In CCA 2008, Andrej Bauer introduced Marshall (Bauer 2008), a programming language
written in OCaml for exact real arithmetic based on Abstract Stone Duality (Bauer and Taylor
2009). At the end of the presentation, a challenge was thrown to the audience, Can this be
implemented as library in an existing programming language?. Today, we show the answer is
yes.

This talk introduces DedekindCutArithmetic.jl, a library that allows for computations with
exact reals. Leveraging Julia’s lisp-style syntactic macros, DedekindCutArithmetic.jl offers an
embedded domain specific language (eDSL), which allows to write cuts and expressions with
quantifiers in a notation resembling the traditional mathematical one.

Since it is an eDSL, it canc ompose with to other libraries in the Julia ecosystem. For example,
similarly to Marshall, the library relies on interval Newton method to speed up refinement of
cuts and quantifiers. However, the derivative is computed using ForwardDiff.jl (Revels, Lubin,
and Papamarkou 2016), a library for high-performance forward-mode automatic differentiation.
As an additional advantage, being the language embedded in Julia, DedekindCutArithmetic.jl
automatically inherits all the features of the language, such as support for higher-order func-
tions and recursion, without the need to be re-implemented.

During this talk, I will introduce the features of DedekindCutArithmetic.jl, focusing on its
architecture, design choices and trade-offs. I will also demostrate in a few examples how
the library can be composed with other libraries in the Julia ecosystem, to be applied to
computational geometry and scientific computing domains. Finally, I will also give an overview
of the roadmap for the library, describing current limitations, next steps and open-questions.

Since few lines of code generally say more than 1000 words, the following copy-pastable working
example demonstrates the syntax and some core functionalities of the library.

1
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1 using DedekindCutArithmetic
2

3 # Textbook example of dedekind cuts, define square-root
4 my_sqrt(a) = @cut x ∈ ℝ, (x < 0) ∨ (x * x < a), (x > 0) ∧ (x * x > a)
5

6 sqrt2 = my_sqrt(2);
7

8 # evaluate to 80 bits precision, this gives an interval with width <2⁻⁸⁰ containing √2
9 refine!(sqrt2; precision=80)

10 # [1.4142135623730949, 1.4142135623730951]
11

12 # Define maximum of a function f: [0, 1] → ℝ as a Dedekind cut
13 my_max(f::Function) = @cut a ∈ ℝ, ∃(x ∈ [0, 1] : f(x) > a), ∀(x ∈ [0, 1] : f(x) < a)
14

15 f = x -> x * (1 - x)
16

17 fmax = my_max(f);
18

19 refine!(fmax) # evaluate to 53 bits of precision by default
20 # [0.24999999999999992, 0.25000000000000006]
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Subrecursive degrees of difference representations of
irrational numbers

Ivan Georgiev

Sofia University,
Faculty of Mathematics and Informatics,

5, James Bourchier Blvd, 1164, Sofia, Bulgaria,
ivandg@fmi.uni-sofia.bg

Abstract. We explore the degree structure of representations of irrational numbers, induced
by subrecursive reducibility. The representation R1 is subrecursive in the representation R2,
denoted R1 ⪯S R2, if there exists a Turing operator, which transforms any R2-representation of
an irrational α into some R1-representation of the same α. The operator is not allowed to use
unbounded minimization and it must work uniformly in α.

For example, we have C ≺S Eb ≺S D ≺S [ ], where C is the representation by Cauchy
sequences with fixed convergence rate, Eb is the representation by base-b expansions, D is the
representation by Dedekind cuts and [ ] is the representation by continued fractions.

This degree structure was formally introduced in [1] quite recently, but the study of concrete
representations in this context can be traced back to the foundational papers [7,8] and since then
it has been constantly evolving, see for example [2,3,5,6].

In this talk we will present a novel idea to define new representations based on difference from
rational numbers. Somewhat surprisingly, this idea produces numerous new subrecursive degrees.

Let R be a representation of the real numbers, such that any α ∈ [0, 1] has a unique represen-
tation Rα. We assume Rα : A → B, where A,B are fixed primitive recursively encoded countable
sets. For any α ∈ (0, 1) \Q we define:

Diffα
R(q) = µa ∈ A[Rα(a) ̸= Rq(a)],

where the minimum is regarded with respect to the coding of A.
We will need some assumptions, so that DiffR is a representation in the sense of [1], that is

Diffα
R is uniformly computably equivalent to the Dedekind cut Dα:

1. The restriction of R to rational numbers, R : Q×A → B, must be computable.
2. There exists a binary computable function P , such that whenever a is a finite list of elements

of A and b is a finite list of elements of B with the same length, P (a, b) produces a rational
number q, which satisfies Rq(ai) = bi for all i.

The first assumption implies that we can compute Diffα
R using oracle Rα (in general, un-

bounded search is needed for that).
The second assumption allows computation of Rα(a) by the following algorithm:
1. Compute all elements a0, . . . , ak = a of A with code at most the code of a. Assume that we

have inductively computed Rα(ai) for i < k.
2. For each bk ∈ B:

Compute q = P (a, b), where bi = Rα(ai) for i < k.
If Diffα

R(q) ̸= a, then return output Rα(a) = bk.
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This is a computable reduction from Diffα
R to Rα, therefore Diffα

R is computably equivalent
to Rα. So whenever R is a representation in the sense of [1], DiffR is also a representation.

Note that in case B is finite and P is primitive recursive no unbounded search is needed in
the above algorithm. But if B is infinite, DiffR and R might even turn out to be subrecursively
incomparable.

As an example, let us consider the representation Diffb, which corresponds to the base-b
expansion Eb. The base-b expansions of numbers of the form m

bn are assumed to end in zeros.

The base-b sum approximation from below Âα
b of α ∈ [0, 1] is defined as Âα

b (n) = Dnb
−kn ,

where Dn ̸= 0 and α =
∑∞

n=0 Dn · b−kn . The base-b sum approximation from above Ǎα
b is defined

symmetrically, so that Ǎα
b (n) = Â1−α

b (n). The base-b sum approximations of rational numbers
with finite base-b expansion are assumed to end in zeros. The general sum approximation from
below (from above) of α ∈ [0, 1] is defined as Ĝα(b, n) = Âα

b (n) (Ǧ
α(b, n) = Ǎα

b (n)).

In the paper [4], it is shown that Ĝ ≺S Diffb ≺S [ ].
Our aim here is to present some new results for the representation Diffb↑ corresponding to

base-b sum approximations from below (symmetric results hold for Diffb↓).
Theorem 1. Eb ≼S Diffb↑ and D ≼S Diffb↑.
Theorem 2. Diffb↑ ̸≼S Ĝ and Diffb↑ ̸≼S Ǧ.

Theorem 3. Âb ̸≼S Diffb↑ and Ǎb ̸≼S Diffb↑.

Keywords: representations of irrational numbers, subrecursive reducibility, difference rep-
resentations

Acknowledgements. This work was supported by the European Union-NextGenerationEU,
through the National Recovery and Resilience Plan of the Republic of Bulgaria, project no. BG-
RRP-2.004-0008-C01.
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Constant-depth approximation of nowhere-differentiable functions

Bruce M. Kapron
Computer Science Department

University of Victoria
bmkapron@uvic.ca

1 Introduction

In his 1962 ICM lecture [Kol62], A.N. Kolmogorov proposed a program of approximating continuous functions
by Boolean circuits and using circuit size to measure the complexity of approximation. In particular, circuits
are viewed as functions on signed dyadic rationals. For a classX of real-valued functions on [−1, 1] letK(X, ϵ)
denote the smallest n such that every f ∈ X is ϵ-approximated by a circuit of size n. Kolmogorov cites work
of Ofman giving a tight characterization of K(X, ϵ) when X is a certain class of smooth functions and upper
and lower bounds on K(X, ϵ) when X is a certain class of functions with an analytic continuation. Here we
will cite improvements of these characterizations given by Asarin [Asa84]. Let Wp+α,c, (p ≥ 0, 0 < α < 1)
denote the class of functions f : [−1, 1] → [−1, 1] that are p times continuously differentiable and whose p-th
derivative satisfies a Hölder condition with exponent α and coefficient c:

|f (p)(x)− f (p)(y)| ≤ c|x− y|α for any x, y ∈ [−1, 1]

and let Ar,c denote the functions f : [−1, 1] → R that can be continued analytically to the Bernstein ellipse
with foci −1 and 1 and sum of semi-axes r with modulus bounded by c on the ellipse. Then

K(Wq,c, ϵ) = Θ

((
1

ϵ

) 1
q

log
1

ϵ

)

K(Ar,c, ϵ) = Ω

(
log2

1

ϵ
/ log log

1

ϵ

)
K(Ar,c, ϵ) = Õ

(
log2

1

ϵ

)

The upper bounds are obtained constructively while the lower bounds rely on entropy arguments (Asarin
[Asa84] also gives a constructive exponential lower bound for 2−n-approximating a 1-Lipschitz function
using an incompressibility-based argument.) Note that in the analytic case, the upper bound gives a 2−n-
approximation by size Õ(n2) circuits. Also note that K(W1, 2

−n) = Θ(n2n), where W1 =
⋃

c W1,c.
An important aspect of the classical theory of polynomial approximation is the existence of so-called “in-

verse theorems”, roughly stating that being “well-approximated” by low-degree polynomials implies smooth-
ness (or even analytic continuation when convergence is rapid enough) [Ber12]. Kolmogorov observes that
corresponding results for small circuit size do not hold. In particular, he notes that a variant of van der
Waerden’s nowhere-differentiable function can be 2−n approximated by circuits of size O(n2). Kolmogorov’s
observation is the starting point for the current note. In particular, we ask whether the lack of an inverse
theorem also holds in the case of circuit depth, recalling that certain classes of analytic functions may be
approximated by constant-depth threshold circuits ([RT92, MT99].) Unfortunately, in this setting we also
obtain a negative result by showing that Takagi’s nowhere-differentiable function can be 2−n approximated
in TC0 and by defining a variant of the function that can be 2−n approximated in AC0.

2 Takagi’s Function

In the sequel, we will work over [0, 1], which is more appropriate for the functions we consider. For x ∈ R, let
⟨⟨x⟩⟩ denote the distance from x to the nearest integer. In 1901, T. Takagi [Tak01] introduced a continuous

1

CCA 2025 Kyoto — Abstracts 22/34



nowhere-differentiable function τ : [0, 1] → [0, 1], which may be defined as follows (see [Lag11] for a complete
discussion):

τ(x) =
∞∑

k=0

1

2k
⟨⟨2kx⟩⟩.

Suppose x, x̃ ∈ [0, 1] where x̃ =
∑2n+2

i=1 bi2
−i and |x− x̃| ≤ 2−(2n+2). We have

|τ(x)− τ(x̃)| =
∣∣∣∣∣
∞∑

k=0

1

2k
⟨⟨2kx⟩⟩ −

∞∑

k=0

1

2k
⟨⟨2kx̃⟩⟩

∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=0

1

2k
⟨⟨2kx⟩⟩ −

2n+1∑

k=0

1

2k
⟨⟨2kx̃⟩⟩

∣∣∣∣∣

≤
2n+1∑

k=0

1

2k
∣∣⟨⟨2kx⟩⟩ − ⟨⟨2kx̃⟩⟩

∣∣+
∞∑

k=2n+2

1

2k
⟨⟨2kx⟩⟩

≤
2n+1∑

k=0

1

2k
· 1

22n−k+2
+

∞∑

k=2n+2

1

2k+1

=
2n+ 2

22n+2
+

1

22n+2
≤ 1

2n

So τ(x̃) provides a 2−O(n) approximation to τ(x). We note that τ(x̃) is obtained by adding 2n+2 numbers of
2n+2 bits, where each number is obtained via a constant-depth transformation of x̃ involving only Boolean
operations (see the discussion in the following paragraph.) Since such sums may be computed in TC0 (see,
e.g., [Vol99]), we conclude that τ may be 2−O(n)-approximated in TC0.

Could it be possible that τ is approximated by an even simpler class of circuits? We will show that τ
cannot be 2−n-approximated in AC0. To start, we recall [Lag11] that for x ∈ [0, 1]

⟨⟨x⟩⟩ =
{

x if 0 ≤ x < 1
2 i.e., b1 = 0

1− x if 1
2 ≤ x ≤ 1 i.e., b1 = 1.

Furthermore, if x =
∑∞

i=1 bi2
−i = 0.b1b2b3 . . . and i ≥ 0, we have

⟨⟨2ix⟩⟩ =
{

0.bi+1bi+2 . . . if bi+1 = 0

0.bi+1bi+2 . . . if bi+1 = 1

where for b ∈ {0, 1}, b = 1 − b = b. Using the fact that b = b ⊕ 1, where ⊕ denotes exclusive-or, we can
rewrite this as

⟨⟨2ix⟩⟩ = 0.(bi+1 ⊕ bi+1)(bi+1 ⊕ bi+2) . . .

and so
1

2i
⟨⟨2ix⟩⟩ = 0. 00 . . . 0︸ ︷︷ ︸

i

(bi+1 ⊕ bi+1)(bi+1 ⊕ bi+2) . . .

Suppose that we have a family {Cn} of constant-depth poly-size Boolean circuits, Cn : {0, 1}α(n) → {0, 1}β(n)
such that for all x, x̃ ∈ [0, 1] where x̃ =

∑α(n)
i=1 bi2

−i and |x − x̃| ≤ 2−α(n), we have |τ(x) − Cn(x̃)| ≤ 2−n,
where Cn(x̃) denotes Cn(b1b2 . . . bα(n)). In particular, |τ(x̃) − Cn(x̃)| ≤ 2−n, which means that τ(x̃) and
Cn(x̃) must agree on their first n bits. Assuming α(n) ≥ n + 1, consider x̃ where bn+1 = 1 and bi = 0 for
i > n+ 1. From the discussion above we have, for 0 ≤ k < n,

⟨⟨2kx̃⟩⟩ =
{

0.bk+1 . . . bn−1bn100 . . . if bk+1 = 0

0.bk+1 . . . bn−1bn011 · · · = 0.bk+1 . . . bn−1bn100 . . . if bk+1 = 1

2
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From this we see that for 0 ≤ k < n, the nth bit of 1
2k
⟨⟨2kx̃⟩⟩ is bk+1 ⊕ bn, while the (n+ 1)st bit is always

1, so that

τ(x̃) = 0.(b1 ⊕ b1)(b1 ⊕ b2) . . . (b1 ⊕ bn) 1

+ 0. 0 (b2 ⊕ b2) . . . (b2 ⊕ bn) 1

+ 0. 0 0 . . . (b3 ⊕ bn) 1

. . .

+ 0. 0 0 . . . (bn ⊕ bn) 1

+ 0. 0 0 . . . 0 1

Letting c denote the nth bit of τ(x̃), we have

b1 ⊕ · · · ⊕ bn =





c⊕ bn ⊕ 1 if n+ 1 is even and
⌊
n+1
2

⌋
is odd

c⊕ bn if n+ 1 is even and
⌊
n+1
2

⌋
is even

c⊕ 1 if n+ 1 is odd and
⌊
n+1
2

⌋
is odd

c if n+ 1 is odd and
⌊
n+1
2

⌋
is even,

where ⊕ denotes exclusive-or. Here the parity of n + 1 determines parity of the bn’s in the nth position
while the parity of

⌊
n+1
2

⌋
determines whether there is a carry-out from the (n+1)st position to the (n−1)st

position. So, by the assumption on {Cn}, we may obtain a family {Dn} of constant-depth poly-sized circuits
such that Dn(b1 . . . bn) = b1 ⊕ · · · ⊕ bn, contrary to the fact that Parity /∈ AC0.

We have ruled out AC0-approximation of Takagi’s function. Now consider the following function:

T (x) =

∞∑

k=0

1

22k−1
⟨⟨22k−1x⟩⟩.

Suppose x, x̃ ∈ [0, 1] where x̃ =
∑2n+2

i=1 bi2
−i and |x− x̃| ≤ 2−(2n+2). Here we have

|T (x)− T (x̃)| =
∣∣∣∣∣
∞∑

k=0

1

22k−1
⟨⟨22k−1x⟩⟩ −

∞∑

k=0

1

22k−1
⟨⟨22k−1x̃⟩⟩

∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

k=0

1

22k−1
⟨⟨22k−1x⟩⟩ −

⌈log(n+1)⌉+1∑

k=0

1

22k−1
⟨⟨22k−1x̃⟩⟩

∣∣∣∣∣∣

≤
⌈log(n+1)⌉+1∑

k=0

1

22k−1

∣∣∣⟨⟨22k−1x⟩⟩ − ⟨⟨22k−1x̃⟩⟩
∣∣∣+

∞∑

k=⌈log(n+1)⌉+2

1

22k−1
⟨⟨22k−1x⟩⟩

≤
⌈log(n+1)⌉+1∑

k=0

1

22k−1
· 1

22n−(2k−1)+2
+

∞∑

k=⌈log(n+1)⌉+2

1

22k

≤ ⌈log(n+ 1)⌉+ 2

22n+2
+

1

22n+2
≤ 1

2n

So T (x̃) provides a 2−O(n) approximation to T (x). T (x̃) is obtained by adding ⌈log(n+1)⌉+2 of numbers of
2n+2 bits where each number can be obtained in AC0. Since such sums may be performed in AC0 (see, e.g.,
[Vol99]). In conclusion, we can 2−O(n)-approximate T in AC0. Here we can use an immediate adaptation to
T of similar proofs (e.g., [Bil82]) for τ . The continuity of T follows by the Weierstrass M-test (or from the

fact that it can be approximated.) Finally, letting φk(x) denote
1

22k−1
⟨⟨22k−1x⟩⟩, if T were differentiable at

x ∈ [0, 1], we would have T ′(x) =
∑∞

k=0 φ
′
k(x). However, this sum diverges since for all k, |φ′

k(x)| = 1. This
intuition can be formalized to show that T is nowhere differentiable.

3
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THE INFINITE LOOP OPERATION AND THE AXIOM OF

DEPENDENT CHOICE

TAKAYUKI KIHARA

Recently, Brattka [1] introduced the notion of infinite loop operation (−)∞ on
Weihrauch problems. Applying Yoshimura’s unpublished theorem [3], one can see
that a Weihrauch problem F is closed under the infinite loop operation (the inverse
limit) if and only if F -relative realizability validates the axiom of dependent choice
DC. Therefore, it is an important problem to investigate which Weihrauch problems
are closed under the infinite loop operation. One question proposed in the recent
Dagstuhl seminar 25131 “Weihrauch Complexity: Structuring the Realm of Non-
Computability (Mar. 23–28, 2025),” was to determine the strength of the infinite
loop closure of LLPOk (all-or-counique choice on k).

Definition 1. LLPOk:

• Input: (a code of) (ni)i<k ∈ Sk such that ni = 1 for at most one i.
• Output: i < k such that ni = 0.

Here, S is the Sierpiński space. The principle LLPOk is first introduced by
Richman [2] in the context of constructive mathematics. This principle is also
called ACCk (all-or-counique choice for k-elements) in the context of Weihrauch
degrees.

Question 1. Is LLPO∞∞∞...
k+1 <W LLPO∞∞∞...

k ?

We solve this problem by showing that LLPO∞∞∞...
k is equivalent to DNRk. Here,

DNR stands for a diagonally non-recursive function1.

Definition 2. DNRk:

• Input: (a code of) a partial function f : ⊆ N → k.
• Output: g ∈ kN such that g(n) ̸= f(n) for any n ∈ dom(f).

Theorem 3. LLPO∞∞
k ≡W DNR∞

k ≡W DNRk.

This has the following conclusion, for example.

Corollary 4. IZF + DC + MP + LLPOk+1 does not imply LLPOk.

Here, IZF stands for intuitionistic ZF set theory, and MP stands for Markov’s
principle.
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Relational Reasoning for Verified Reiterative
Implementations of Multivalued Real Computations

Hyunwoo Lee1, Sewon Park2

1Deptartment of Computer Science and Engineering, Seoul National University – Republic of Korea
2Graduate School of Informatics, Kyoto University – Japan

We recall relational program logic [Fra83, MHRVM19] for ordinary programming languages over intervals
with discrete, multi-precision endpoints, to verify the correctness of reiterative implementations of exact real
number computations, such as iRRAM [Mül00]. The C++ implementation of iRRAM introduces a so-called
multivalue cache, consisting of shared stores preserved and accessed throughout reiterations. It is used to achieve
consistency in multivalued computation: when a computation is repeated with higher precision, the computation
path, including IO values, must remain consistent. Such consistency is a crucial property of exact real number
computation. It justifies hiding internal representations and reiterations, allowing users to reason about real
numbers based on the familiar structure of abstract real numbers [BCZ22, PBC+24, BPS24]. We show that
reiteration consistency can be encoded as a relational property, and propose relational correctness, together with
reasoning invariant over the multivalue cache, as a plausible approach to verifying whether implementations
truly achieve this consistency.

We further show how our framework for reasoning about implementation correctness can be extended to
arbitrary continuous data types (e.g., [LLPZ19, HP20]) and their representations in the sense of computable
analysis [Wei00]. We claim that this is particularly useful when a complex data type requires native low-level
support for performance reasons.

It is addressed in [PT23] that reiterative implementations of real computations, in general, fail to provide
modularity when, for example, c1 and c2 interfere due to a shared multi-valued cache. In such cases, the limit
behavior of c1; c2 may not be identical to the composition of the two. We overcome this problem by enforcing
strong physical separation in the cache to allow program composition. Easing this condition into weaker logical
separation remains a main direction for future work.
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RANDOMNESS WITH RESPECT TO C.E. SEMIMEASURES

KENSHI MIYABE

Martin-Löf randomness with respect to computable measures is typically defined
through the concept of tests. It also has robust characterizations via martingales
and complexity. Recently, randomness with respect to c.e. semimeasures has begun
to attract attention. In this talk, we propose several definitions of randomness,
particularly focusing on those based on complexity, and clarify the hierarchy among
them.

Bienvenue et al. [2] is probably the first study in this area, which focused on ran-
domness preservation and no-randomness-from-nothing. These theorems roughly
state that randomness with respect to a computable measure is preserved under
computable mappings defined almost everywhere. This preservation does not hold
for a partial computable mapping, whose push-forward measure is a c.e. semimea-
sure. Bienvenue et al. [2] showed that there exist two partial computable functions
with the same push-forward measure but differing images of random sequences.

A related paper by Barmpalias and Shen [1] explores a notion of randomness for
c.e. semimeasures different from the one proposed by Bienvenu et al. [2]. Under addi-
tional conditions, they establish a result analogous to no-randomness-from-nothing.

We clarify the situation by defining several concepts of randomness and examining
the hierarchical structure among them. Our findings are best viewed in compari-
son with the hierarchy of randomness concepts considered in the context of partial
randomness. Hudelson’s doctoral thesis [3] serves as a useful survey on this topic.

Now we define some randomness notions with respect to c.e. semimeasures µ. We
consider the following four notions.

(I) KA-f -complexity.
(II) Strong K-f -complexity.

(III) K-f -complexity.
(IV) f -ML-randomness.

The former three notions have been appeared in Hudelson [3, Page 13]. The no-
tion (IV) has been defined in Bienvenue et al. [2]. The notion (I) with additional
conditions are considered in Barmpalias and Shen [1].

Let f : 2<ω → [0, ∞] be a function. We intend to let f(σ) = − log µ(σ) for a c.e.
semimeasure µ. Thus, f is usually a upper semi-computable function.

Date: 2025-05-31 14:22:09 JST.
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RANDOMNESS WITH RESPECT TO C.E. SEMIMEASURES 2

Definition 1 (complexity). A sequence X ∈ 2ω is called KA-f -complex if

K(X ↾ n) > f(X ↾ n) − O(1).

A sequence X ∈ 2ω is called strongly K-f -complex if

K(X ↾ n) − f(X ↾ n) → ∞ as n → ∞.

A sequence X ∈ 2ω is called K-f -complex if

K(X ↾ n) > f(X ↾ n) − O(1).

For a definition of ML-randomness for a c.e. semimeasure, we use a sequence of
strings rather than a c.e. open set.

Definition 2 (ML-randomness). A f -ML-test is a sequence of uniformly c.e. sets
Sn ⊆ 2<ω such that ∑

σ∈Sn
2−f(σ) ≤ 2−n for all n ∈ ω. A sequence X ∈ 2ω is called

f -ML-random if X ̸∈ ⋂
n[Sn] for each f -ML-test (Sn)n.

Some researchers have called this notion dwt-f -randomness.
The main goal is to show the following implications:

(I) ⇒ (II) ⇒ (III) ⇒ (IV).

Each implication is strict.
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CONSTRUCTIBLE FAILURES OF ERDŐS-VOLKMANN FOR RINGS

LINUS RICHTER

1. Introduction

Set-theoretical axioms and the structure of the real line are deeply intertwined. The inves-
tigation of their relationship pitches the definable structure of sets of real numbers against the
behaviour of non-constructive existence axioms. The former camp is classically represented by
the Borel sets; the latter by the Axiom of Choice. Let P be a property of sets of reals. The
following pattern has emerged frequently:

(1) ZFC P holds for every Borel set
(2) ZFC+ CH P fails for some non-Borel set
(3) ZF+ DC+ AD P holds for every set
(4) ZFC+ V=L P fails for some co-analytic set

Examples of properties following this pattern include the perfect set property and the property
of Baire, Marstrand projection, and the Solecki dichotomy [2, 6, 13, 16, 12]. Normally, (3) follows
from (1) by expressing P game-theoretically. Then (1) follows from Borel determinacy, and (3)
follows from AD; (2) is often a diagonalisation argument. But what is the least complexity class
for which (2) holds, assuming ZF? The complexity of CH-constructed “counterexamples” in (2)
is not finely calibrated. This leads to the following research question:

“Find the least Γ such that there consistently exists X ∈ Γ for which P fails.”

Z. Vidnyánszky [14] has generalised a method first used by P. Erdős, K. Kunen and R. D.
Mauldin [4], and by A. Miller [11] to recursively construct Π

˜
1
1 sets of reals, assuming V=L;

this is a fruitful tool to establish item (4) in the table above. Notably, Vidnyánszky’s theorem
lends itself to applications in fractal geometry. Via Lutz’ and Lutz’ point-to-set-principle [7],
algorithmic randomness and effective dimensions of reals can be used to construct sets of patho-
logical fractal properties. hence, we aim to contribute to the general research programme of
structurally classifying the proof-theoretic strength of ZF for regularity properties of sets of reals
in the context of fractal geometry. Here, we focus on the Erdős-Volkmann-problem for rings.

2. Erdős-Volkmann for Rings

The Erdős-Volkmann-problem is a ring-theoretical problem originally posed by B. Volk-
mann [15] and partially resolved by P. Erdős and B. Volkmann [5], which contrasts the algebraic
structure of subrings of R with their geometric structure. To state their work, let Γ denote a
pointclass (e.g. Borel = ∆

˜
1
1 or analytic = Σ

˜
1
1). We denote by Pring(Γ) the property:

If B ⊆ R is a proper subring of R and B ∈ Γ, then dimH(B) = 0 or B = R.
In 1966, Erdős and Volkmann showed that, for Borel sets, the notion of subgroup is too weak

to preserve high geometric structure as characterised by Pring(∆˜
1
1) [5]:

Theorem 2.1 (ZF, Erdős-Volkmann-Theorem). For every s ∈ [0, 1] there exists a Borel sub-
group G ≤ R such that dimH(G) = s. In other words, Pgroup(∆˜

1
1) is false.

For subrings, the situation is different, as was shown by G. Edgar and C. Miller [3] and
independently Bourgain [1]:

Theorem 2.2 (ZF, Edgar-Miller-Bourgain-Theorem). If B ⊆ R is a proper subring of R that
is Σ
˜

1
1 then dimH(B) = 0 or B = R. In other words, Pring(Σ˜

1
1) is true.
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2 LINUS RICHTER

R. O. Davies contributed item (2) by constructing subrings of arbitrary dimension. By the
Edgar-Miller-Bourgain-Theorem, these subrings are not Σ

˜
1
1. However, Davies’ proof is unpub-

lished (cf. [9, p. 167]). In 2016, Mauldin provided the details by “completing an attack first
discovered by Roy Davies” [10] and showed:

Theorem 2.3 (CH, Davies-Mauldin-Theorem). For every s ∈ (0, 1) there exists a proper sub-
ring B ⊆ R for which dimH(B) = s.

This leaves items (3) and (4) open—this is one interpretation of the Erdős-Volkmann-ring-
problem.

3. Our Contribution

We report on ongoing work to establish item (4) for the Erdős-Volkmann ring problem. Pre-
cisely, we aim to construct, for every s ∈ (0, 1), a proper Π

˜
1
1-subring A ⊆ R of Hausdorff

dimension s. Such a result would prove that ZFC is not powerful enough to prove Pring(Π˜
1
1).

The difficulty lies in the Davies-Mauldin-proof, which cannot be trivially effectivised to make
use of Vidnyánszky’s theorem alongside the point-to-set-principle. We explain these difficulties,
which are both algebraic and algorithmic, and motivate possible workarounds. For instance, a
classification of sets of bounded Hausdorff dimension, in the style of Marcone and Valenti [8]
could be useful in transferring the Davies-Mauldin proof into Vidnyánszky’s framework.
Further, it is our hope to isolate a criterion which, especially in the context of fractal geometry,

gives a uniform description of those properties P for which item (4) holds. The connection
between classical Hausdorff dimension and algorithmic randomness appears fruitful to provide
such a characterisation. This would be of additional interest as the Erdős-Volkmann problem is
also influenced by additional algebraic structure.
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A Verified Power-Series Method for Multivariate IVPs∗

Holger Thies1

1Kyoto University, Japan

We formalize and verify an algorithm for rigorously solving initial value problems (IVPs)
for systems of multivariate analytic ordinary differential equations (ODEs) based on ideas
from computable analysis, within the Rocq (formerly Coq) proof assistant. The goal is to
provide verified computational solutions with explicit error control based on constructive
implementations of real numbers in the proof assistant. More precisely, we consider IVPs for
systems of (autonomous) first-order analytic ODEs of the form

˙⃗y(t) = f⃗(y⃗(t)), y⃗(0) = y⃗0 (1)

with f⃗ : U ⊆ Rd → Rd.
In the context of computable analysis often a method based on computing the infinite

Taylor series expansion at a point is used [BKM16, KST18, SSTZ21] for analytic IVPs. This
method is efficient in this framework as error bounds decrease exponentially in the order of
the expansion and therefore (in contrast to e.g. the Euler method or Runge-Kutta methods)
allows feasible computation for high precision [Mül95]. The method is based on the ODE
version of the Cauchy-Kovalevskaya theorem and its classical proof (see e.g. [Tes12, Chapter
4]). The main idea is to compute the power series of the solution by recursively determining
higher-order derivatives, that is, we define a sequence F [n] : Rd → Rd of multivariate analytic
functions by

F [0](x⃗) = x⃗, F [n+1](x⃗) = f⃗(x⃗) ·D
(
F [n]

)
(x⃗),

where D denotes the Jacobian. The resulting infinite series y⃗(t) =
∑∞

i=0
1
n! F⃗

[n](y0)t
n

converges effectively to the unique solution of (1). Further, rigorous error bounds can be
computed explicitly from simple bounds on the right-hand side function f . Note that the
resulting power series is never finite except for trivial cases.

Previous work [PT24] by Park and the author presented a formalization of this method
in Rocq as part of the certified exact real computation library cAERN [KPT24]. However,
the implementation only supports one-dimensional polynomial ODEs, and thus has limited
practical applications. Furthermore, cAERN’s main purpose is the extraction of efficient and
certified programs for the exact real computation library AERN and it thus does not support
direct computation within the proof assistant. Although extracted programs are typically
more efficient than computing inside of Rocq, this feature can still be useful, especially since
it allows to include the results of computations inside formal proofs.

In this talk, we present a new Rocq formalization1 which is applicable to systems of ar-
bitrary dimension and to generic analytic right-hand side functions. Furthermore, instead of
using a concrete type for real numbers and functions, we use type classes and setoids to ab-
stractly specify which kind of properties are needed. The type-classes can be instantiated with
any type satisfying these properties, making the formalization flexible and easily adaptable to
different formalizations of constructive real numbers in Rocq, including the implementation
in the Rocq standard library. The development is modular, giving precise control over the
properties required in different parts of the formalization. This makes it straightforward to

∗This work was supported by JSPS KAKENHI Grant Numbers JP23K28036, and JP24K20735.
1https://github.com/holgerthies/taylor_rocqs
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adapt the solver not only to exact real-number types but also to discrete numeric types such
as rationals or arbitrary-precision floating-point numbers, allowing to compute exact approxi-
mations with rigorous error bounds. We further demonstrate how the results can be extended
to interval arithmetic, resulting in a verified solver that efficiently computes rigorous interval
enclosures for ODE trajectories.

To illustrate the practicality of our formalization, we instantiate and benchmark it us-
ing multiple concrete constructive real number frameworks, including the standard library’s
Cauchy reals, an implementation from the CoRN library [CFGW04], and an efficient interval
version based on the CoqInterval library [MDM16], and test the implementation on several
classical and practically relevant example ODEs.
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[KPT24] Michal Konečný, Sewon Park, and Holger Thies. Extracting efficient exact real
number computation from proofs in constructive type theory. Journal of Logic
and Computation, page exae066, 10 2024.

[KST18] Akitoshi Kawamura, Florian Steinberg, and Holger Thies. Parameterized com-
plexity for uniform operators on multidimensional analytic functions and ODE
solving. In International Workshop on Logic, Language, Information, and Com-
putation, pages 223–236. Springer, 2018.
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