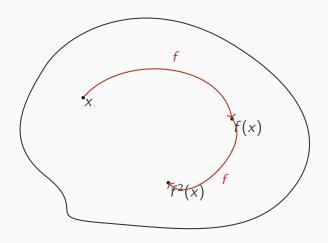
PSPACE-Completeness of the Reachability Relation of Robust Dynamical Systems

Manon Blanc

IT-UNIVERSITETET I KØBENHAVN

Introduction

Introduction: General Dynamical Systems



Computability Properties

• Reachability is undecidable...

Computability Properties

- Reachability is undecidable...
- ... more precisely, it is not co-computably enumerable;

Computability Properties

- Reachability is undecidable...
- ... more precisely, it is not co-computably enumerable;
- It becomes decidable for a sub-class of systems: Robust Dynamical Systems.

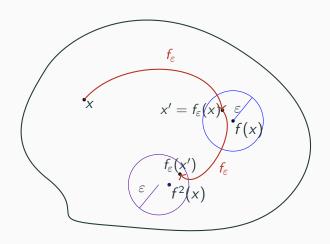
Computability

- Informal conjecture: undecidability in verification does not happen for robust systems.
- Undecidability is related to non-robustness of the systems (Asarin, Bouajjani)
 - \rightarrow with proper notion of robusteness: no sensitivity to an arbitrarly small perturbation.

Definitions and Properties

Robust Dynamical Systems:

Robust Dynamical Systems



Robustness

Consider
$$R_{\omega}^{\mathcal{H}}(x,y) = \bigcap_{\epsilon>0} R_{\epsilon}^{\mathcal{H}}(x,y)$$

- Say $R^{\mathcal{H}}$ is robust when $R^{\mathcal{H}}_{\omega}=R^{\mathcal{H}}$: $R^{\mathcal{H}} \text{ robust } \Rightarrow R^{\mathcal{H}} \text{ computable.}$
- Reachability in robust dynamical systems is decidable (Asarin & Bouajjani)

PSPACE on polynomially robust dynamical systems

Theorem (B., Bournez CSL 2024)

Take a locally Lipschitz system \mathcal{H} , with $f: X \to X$ polynomial-time computable, with X a closed rational box. Then, for $p: \mathbb{N} \to \mathbb{N}$ a polynomial, $R_{2^{-p(n)}}^{\mathcal{H}} \subseteq \mathbb{Q}^d \times \mathbb{Q}^d \times \mathbb{N} \in \mathsf{PSPACE}$, with n the precision of the computation.

 \rightarrow works also for dynamical systems over the reals

Example

Simulation of Turing machines with continuous PAMs.

Toward PSPACE-Completeness

Encoding [Kawamura & Cook '12]

- $f: \Sigma^* \to \Sigma^*$ regular \Leftrightarrow for all $u, v \in Dom(f)$ such that $|u| \le |v|$, then $|f(u)| \le |f(v)|$.
- Reg : set of regular functions
- **Pred** : set of $\{0,1\}$ -valued regular functions

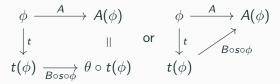
Encoding [Kawamura & Cook '12]

- $f: \Sigma^* \to \Sigma^*$ regular \Leftrightarrow for all $u, v \in Dom(f)$ such that $|u| \le |v|$, then $|f(u)| \le |f(v)|$.
- Reg : set of regular functions
- **Pred** : set of $\{0,1\}$ -valued regular functions
- \rightarrow regular functions give a proper measure of length, especially for oracles

Type-2 Reduction for Decision Problems

Definition (Kawamura-Cook)

Let A and B be decision problems, or multi-functions from \mathbf{Reg} to \mathbf{Pred} . We write $A \leq_m^2 B$ if there exists $s, t \in \mathsf{FPTIME}^2$ such that for any $\phi \in Dom(A)$, we have $s(\phi) \in Dom(B)$ and for $\theta = B(s(\phi))$ the function $\theta \circ t(\phi) = A(\phi)$.



C

An example of complete problem

Basic PSPACE²:

 $\frac{\text{Input:}}{\bar{\mu}(u)} < M, \bar{\mu}, \phi> \text{, with } M \text{ a Type-2 TM, } \bar{\mu} \in \mathbf{Reg} \text{ such that } \\ \bar{\mu}(u) = 0^{\mu(|u|)} \text{ where } \mu: \mathbb{N} \to \mathbb{N} \text{ a non-decreasing polynomial bounding the space of } M, \phi \in \mathbf{Reg} \text{ and a string } u.$

Output: Does M, with an oracle ϕ , accept u?

The case of Discrete-Time Dynamical Systems

A previous result on FPTIME

$$\overline{\mathbb{LDL}^{\circ}} = [\mathbf{0}, \mathbf{1}, \pi_{i}^{k}, \ell(x), +, -, \tanh, \frac{x}{2}, \frac{x}{3};$$

composition, linear length ODE, effective limit]

Theorem (B., Bournez, MFCS23)

$$\overline{\mathbb{LDL}^{\circ}} \cap \mathbb{R}^{\mathbb{R}} = \overline{\mathsf{FPTIME}} \cap \mathbb{R}^{\mathbb{R}}$$

Discrete-Time

Discrete Reach Robust Lipschitz (DRRL):

Input: A discrete-time polynomially robust dynamical system $\overline{\mathcal{H}}=(X,g), X$ a closed rational box, $(g:X\to X)\in\mathbb{LDL}^\circ+\Phi$ Lipschitz, $p\in\mathbb{N}, \mathbf{x}, \mathbf{y}\in X$ Output: $R^\mathcal{H}_{2-p}(\mathbf{x},\mathbf{y})$

with $\Phi: \gamma(w) \to \gamma(\phi(w)), \ \gamma: \Sigma^* \to \mathbb{R}, \ w \in \Sigma^*, \ \phi \in \mathbf{Reg}$

Discrete-Time

Discrete Reach Robust Lipschitz (DRRL):

Input: A discrete-time polynomially robust dynamical system $\mathcal{H}=(X,g), X$ a closed rational box, $(g:X\to X)\in\mathbb{LDL}^\circ+\Phi$ Lipschitz, $p\in\mathbb{N}, \mathbf{x},\mathbf{y}\in X$

Output:
$$R_{2^{-p}}^{\mathcal{H}}(\mathbf{x}, \mathbf{y})$$

with
$$\Phi : \gamma(w) \to \gamma(\phi(w)), \ \gamma : \Sigma^* \to \mathbb{R}, \ w \in \Sigma^*, \ \phi \in \mathbf{Reg}$$

Theorem

DRRL is
$$PSPACE^2 - \leq_m^2$$
-hard.

Proof Ideas: Reduction

Basic PSPACE²:

 $\begin{array}{ll} \underline{\mathsf{Input:}} & < M, \bar{\mu}, \phi > \text{, with } M \text{ a Type-2 TM, } \bar{\mu} \in \mathbf{Reg} \text{ such that} \\ \overline{\mu}(u) & = 0^{\mu(|u|)} \text{ where } \mu : \mathbb{N} \to \mathbb{N} \text{ a non-decreasing polynomial} \\ \mathsf{bounding the space of } M, \ \phi \in \mathbf{Reg} \text{ and a string } u. \end{array}$

Output: Does M, with an oracle ϕ , accept u?

We prove that: **Basic** PSPACE² \leq_m^2 **DRRL**

Proof Ideas: Encoding

Transforming the execution of the TM into a dynamical system:

- ullet Domain o encoding of the space of the possible configurations
- ullet Dynamic o encoding of the execution of the TM into a discrete ODE

Proof Ideas: Encoding

Transforming the execution of the TM into a dynamical system:

- ullet Domain o encoding of the space of the possible configurations
- Dynamic → encoding of the execution of the TM into a discrete ODE
 - t = encoding of the execution;
 - s ≡ maps the real encoding the configuration C_i to the real encoding C_{i+1} (related to the oracle);

Proof Ideas: Encoding

Transforming the execution of the TM into a dynamical system:

- ullet Domain o encoding of the space of the possible configurations
- Dynamic → encoding of the execution of the TM into a discrete ODE
 - t = encoding of the execution;
 - s ≡ maps the real encoding the configuration C_i to the real encoding C_{i+1} (related to the oracle);
 - Prove it is computable in polynomial time
 - Prove the underlying function is Lipschitz

The case of Continuous-Time Dynamical Systems

Continuous-Time

Continuous Reach Robust Lipschitz (CRRL):

Input: A continuous-time polynomially robust dynamical system

$$\mathcal{H}_C = (X_C, g_C)$$
, with $X_C \subseteq \mathbb{R}$ a closed rational box, $g_C : X_C \to \mathbb{R}$

 $X_C \in \mathbb{LDL}^{\circ}$ Lipschitz, $p \in \mathbb{N}$, $\mathbf{x}, \mathbf{y} \in X_C$

Output: $\mathfrak{R}_{2^{-\rho}}^{\mathcal{H}_{\mathcal{C}}}(\mathbf{x},\mathbf{y})$

Theorem

CRRL is $PSPACE^2 - \leq_m^2 - hard$.

Proof Ideas: Reduction

We prove that:
$$DRRL \leq_m^2 CRRL$$

Proof Ideas: Reduction

We prove that: $DRRL \leq_m^2 CRRL$

- We use the Branicky trick:
 - t ≡ encoding of the Branicky trick in our context;
 - s = maps a real in the solution of the discrete ODE to the next point
 - Prove it is computable in polynomial time

Conclusion

Conclusion

- **DRRL** is PSPACE²- \leq_m^2 -complete.
- **CRRL** is PSPACE²- \leq_m^2 -complete.
- Having such completeness results allows us to have a better understanding of those complexity classes.