The infinite loop operation and the axiom of dependent choice

Takayuki Kihara

Nagoya University, Japan

The 21th CCA Kyoto September 24, 2025 This is a talk on Weihrauch reducibility and its applications to (semi-)constructive mathematics.

TABLE OF CONTENTS

- Computability Theory
- Realizability Theory
- Main Results

Naïve Idea.

- Weihrauch reducibility is a tool for the computability-theoretic classification of ∀∃-theorems.
- Think of an $\forall \exists$ -theorem $\forall x \in X \exists y \in Y \varphi(x, y)$ as a partial multi-valued function.
 - Input: a code of $x \in X$.
 - Output: a code of $y \in Y$ such that $\varphi(x,y)$ holds.
 - ightharpoonup Unless otherwise specified, a code is an element in $\mathbb{N}^{\mathbb{N}}$.
- A Weihrauch problem is a partial multifunction $:\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$.

For realizability theorists:

- A Weihrauch problem is a predicate $\varphi \colon X \to \Omega$, where X is a (partitioned) modest set.
 - $ightharpoonup X
 ightharpoonup \Omega$ is the same thing as $X
 ightharpoonup \mathbb{N}^{\mathbb{N}}$.
 - \triangleright As a problem: "Given a code of x, find a realizer for $\varphi(x)$."

A multifunction $F:\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$ is Weihrauch reducible to $G:\subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}}$ if there exist partial computable functions φ, ψ on $\mathbb{N}^{\mathbb{N}}$ such that

- given an instance $x \in dom(F)$,
- the inner reduction φ yields an instance $\tilde{x} \in \text{dom}(G)$,
- and then, given a solution $y \in G(\tilde{x})$,
- the outer reduction ψ yields a solution $\tilde{y} \in F(x)$.

	Oracle	Computer
1:	$x \in dom(F)$	
2:		$\varphi(x) = \tilde{x} \in \text{dom}(G)$
3:	$y \in G(\tilde{x})$	
4:		$\psi(x,y)=\tilde{y}\in F(x)$

► This corresponds to a relative computability that makes a *single query* to an oracle.

How to make many queries?

- Brattka-Gherardi-Marcone (2012) introduced the operation $G \star H$;
 - ➤ The computation first makes a query to *H* once, and then makes a query to *G* once.
- $F \leq_W G \star H \iff Computer$ has a computable winning strategy for the following game:

	Oracle	Computer
1:	$x_0 \in \text{dom}(F)$	
2:		$z_0 \in \text{dom}(H)$
3:	$x_1 \in H(z_0)$	
4:		$z_1 \in dom(G)$
5:	$x_2 \in G(z_1)$	
6:		$z_2\in F(x_0)$

$$ightharpoonup F$$
 is *n*-queries reducible to $G \iff F \leq_W \underbrace{G ★ \cdots ★ G}_n$

Hirschfeldt-Jockusch's reduction game (2016):

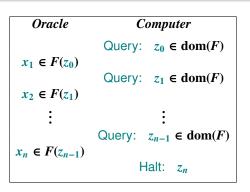
```
Oracle
                            Computer
x_0 \in \text{dom}(F)
                     Query: z_0 \in \text{dom}(G)
 x_1 \in G(z_0)
                     Query: z_1 \in \text{dom}(G)
 x_2 \in G(z_1)
                   Query: z_{n-1} \in \text{dom}(G)
x_n \in G(z_{n-1})
                        Halt: z_n \in F(x_0)
```

- Oracle's moves are x_0, x_1, x_2, \dots
- *Computer*'s moves are of the forms (Query, z_i) or (Halt, z_i).
 - ▶ Query is a signal to ask a query to oracle.
 - ▶ Halt is a signal to terminate the computation.
- F is G. Weihrauch reducible to G (written F ≤_{GW} G)

 ⇔ Computer has a computable winning strategy.

Def. (*Neumann-Pauly 2018*). For a Weihrauch problem F, define a new Weihrauch problem F^{\diamond} as follows:

- $\sigma \in \text{dom}(F^{\diamond}) \iff \sigma$ is *Computer*'s continuous strategy that eventually halts at some round, regardless of *Oracle*'s strategy.
- $F^{\diamond}(\sigma)$ is the value of *Computer*'s last move (e.g., z_n in the play below).



▶ Prop. (Neumann-Pauly 2018). $F \leq_{GW} G \iff F \leq_{W} G^{\diamond}$.

Def. (*Brattka 2025, Yoshimura*). For a Weihrauch problem F, define a new Weihrauch problem F^{∞} as follows:

- $\sigma \in \text{dom}(F^{\infty}) \iff \sigma \text{ is } \textit{Computer's } \text{ continuous strategy.}$
- $F^{\infty}(\sigma)$ is the history of the resulting computation.

Oracle	Computer
	$z_0 \in \text{dom}(F)$
$x_1 \in F(z_0)$	- 1 (7)
$x_2 \in F(z_1)$	$z_1 \in \mathrm{dom}(F)$
	•
:	$z_{n-1} \in \mathrm{dom}(F)$
$x_n \in F(z_{n-1})$	z _{n=1} c dom(r)
	:
•	•

Abstract Definitions (Pradic-Price, Ahman-Bauer):

A Weih. problem F can be expressed as a polynomial functor.

$$P_F := \lambda X. \sum_{x \in \text{dom}(F)} X^{F(x)}$$

• $G \star F$ is the composition of polynomial functors F, G:

$$P_{G \star F} \simeq P_F \circ P_G$$

• F^{\diamond} is the initial algebra for a polynomial functor (W-type)

$$P_{F^{\diamond}} \simeq \mu(1 + P_F)$$

- ▶ 1 is a constant symbol for "Halt."
- F^{∞} is the final coalgebra for a polynomial functor (*M*-type)

$$P_{F^{\infty}} \simeq \nu P_F$$

Description of the initial algebra μP for a polynomial functor P:

- *W*-type: the well-founded trees.
- the (internal) colimit of transfinite iterated applications of *F*:

$$0 \xrightarrow{!} P0 \xrightarrow{P!} P^20 \xrightarrow{P^2!} \cdots \longrightarrow P^{\omega}0 = \underset{n < \omega}{\operatorname{colim}} P^n0 \longrightarrow \cdots$$

(For F^{\diamond} , represent HJ's reduction game (2016) using a strategy tree. Lee-van Oosten (2011/2013)'s definition is closer to the W-type.)

Description of the final coalgebra vP for a polynomial functor P:

- *M*-type: the (possibly ill-founded) trees.
- the (internal) limit of ω -iterated applications of P:

$$vP \simeq \lim_{n < \omega} P^n 1 \longrightarrow \cdots \xrightarrow{P^2!} P^2 1 \xrightarrow{P!} P1 \xrightarrow{!} 1$$

(In other words, F^{∞} can be written either as *trees* or as an *inverse limit*. Yoshimura (2016)'s is coalgebraic, and Brattka (2025) uses the inverse limit.)

TABLE OF CONTENTS

- Computability Theory
- Realizability Theory
- Main Results

Kleene's realizability interpretation (1945)

- A realizer for $A \wedge B$ is a pair of realizers of A and B.
- A realizer for A V B is a pair of a tag indicating which of A or B is correct and a realizer of the formula for the correct side.
- A realizer for $A \rightarrow B$ is (a code of) a computable function that, given a realizer of A, outputs a realizer of B.
- A realizer for $\exists x \in I$. A(x) is a pair of a code of a witness $c \in I$ of the existence and a realizer of the formula A(c).
- A realizer for $\forall x \in I$. A(x) is (a code of) a computable function that, given a code of an element $c \in I$, outputs a realizer of A(c).
- This interpretation can obviously be made relative to an oracle.
 - \triangleright Given an oracle α , replace "computable" with " α -computable".
 - \triangleright An oracle α is not necessarily single-valued or total.
 - An oracle changes semantics.

- $F :\subseteq \mathbb{N} \Rightarrow \mathbb{N}$ a Weihrauch problem (partial multi-valued function).
- An *F*-realizer for $A \rightarrow B$ is *Computer*'s computable winning strategy for the following game:

Oracle	Computer
x_0 realizes A	
- T ()	Query: $z_0 \in \text{dom}(F)$
$x_1 \in F(z_0)$	Query: $z_1 \in \text{dom}(F)$
$x_2 \in F(z_1)$	Guory: Li C uom(r)
:	:
- E()	Query: $z_n \in \text{dom}(F)$
$x_{n+1} \in F(z_n)$	Halt: z_{n+1} realizes B

- *Oracle*'s moves are x_0, x_1, x_2, \dots
- *Computer*'s moves are of the forms (Query, z_i) or (Halt, z_i).
 - ▶ Query is a signal to ask a query to oracle.
 - ▶ Halt is a signal to terminate the computation.

Hirschfeldt-Jockusch's reduction game (2016):

```
Oracle
                             Computer
x_0 \in \text{dom}(G)
                     Query: z_0 \in \text{dom}(F)
 x_1 \in F(z_0)
                     Query: z_1 \in \text{dom}(F)
 x_2 \in F(z_1)
                   Query: z_{n-1} \in \text{dom}(F)
x_n \in F(z_{n-1})
                        Halt: z_n \in G(x_0)
```

- Oracle's moves are x_0, x_1, x_2, \dots
- *Computer*'s moves are of the forms (Query, z_i) or (Halt, z_i).
 - ▶ Query is a signal to ask a query to oracle.
 - ▶ Halt is a signal to terminate the computation.
- G is G. Weihrauch reducible to F (written G ≤_{GW} F)

 ⇔ Computer has a computable winning strategy.

Theorem (essentially Yoshimura 2016)

The following are equivalent for a "well-behaved" Weihrauch problem F:

- The axiom of dependent choice is *F*-realizable.
- 2 F^{\diamond} is closed under the infinite loop $(F^{\diamond})^{\infty} \equiv_W F^{\diamond}$.
 - Note: Due to an insufficient understanding of (−)[♦] at that point,
 Yoshimura was unable to describe his theorem in this form.
 - I found an error in the proof I wrote immediately after Dagstuhl, so I'm temporarily adding a "well-behavedness" assumption.
 This well-behavedness assumption poses no problem for specific problems we'll address from here on.

Related???

Fact

Let \mathcal{E} be a topos. The following are equivalent:

lacktriangle satisfies the axiom of dependent choice:

$$\forall x \in X \exists y \in X \varphi(x,y)$$

$$\rightarrow \forall x_0 \in X \exists f \in X^{\omega} (f(0) = x_0 \& \forall n \in \omega \varphi(f(n), f(n+1)).$$

2 Any ω^{op} -limit (i.e., inverse limit) preserves surjectivity:

$$ightharpoonup g: X o X$$
 surjective $\implies \pi_0: \lim_{n \to \infty} g^{(n)} \to X$ surjective.

TABLE OF CONTENTS

- Computability Theory
- Realizability Theory
- Main Results

Previous works:

- Yoshimura (2016): $UC_{\mathbb{N}^{\mathbb{N}}}$ and $C_{\mathbb{N}^{\mathbb{N}}}$ are closed under $(-)^{\infty}$.
- Brattka (2025): $C_{2^{\mathbb{N}}}$ (so *WKL*) is closed under $(-)^{\infty}$.

$LLPO_k$:

- Input: (a code of) $(n_i)_{i < k} \in \mathbb{S}^k$ such that $n_i = 1$ for at most one i.
- Output: i < k such that $n_i = 0$.

$LLPO := LLPO_2$

• Brattka (2025): $LLPO^{\infty\infty} \equiv_{\mathbf{W}} WKL^{\infty} \equiv_{\mathbf{W}} WKL$.

Question (Dagstuhl, Mar. 2025):

• What is the " ∞ -closure" of $LLPO_k$?

DNR_k :

- Input: (a code of) a partial function $f \subseteq \mathbb{N} \to k$.
- Output: $g \in k^{\mathbb{N}}$ such that $g(n) \neq f(n)$ for any $n \in \text{dom}(f)$.

Theorem (K.)

$$LLPO_k^{\infty\infty} \equiv_W DNR_k^{\infty} \equiv_W DNR_k.$$

Corollary:

- The ∞-closure of $LLPO_{k+1} <_W$ the ∞-closure of $LLPO_k$.
- ightharpoonup Indeed: $LLPO_k \nleq_W LLPO_{k+1}^{\infty}$.

- $ightharpoonup LLPO_k \not\leq_W LLPO_{k+1}^{\infty}.$
- ▶ Recall: DC is related to infinite loop (inverse limit). Thus, considering $LLPO_{k+1}^{\infty}$ -realizability, we obtain:

Theorem (K.)

IZF + DC + MP does not prove $LLPO_{k+1} \rightarrow LLPO_k$.

- ▶ IZF: Intuitionistic ZF set theory
- ▶ DC: dependent choice
- ightharpoonup MP: Markov's principle (double negation elimination for Σ^0_1 formulas)

Logical Principles

- $WLEM_k$: If $\varphi(n)$ holds for at most one n < k, then there exists n < k for which $\neg \varphi(n)$ holds.
- $LLPO_k$: The restriction of $WLEM_k$ to Σ_1^0 formulas.
- There is a complexity hierarchy inbetween $LLPO_k$ and $WLEM_k$:

$$LLPO_k <_W \Sigma_2\text{-}LLPO_k <_W \cdots <_W \Pi_1^1\text{-}LLPO_k <_W \cdots <_W WLEM_k$$

Key Point

- Γ -*LLPO*_k can be presented as a Weihrauch problem.
 - ▶ Input: an index of a Γ formula φ(n,x) with a parameter x, where φ(n,x) holds for at most one n < k.
 - ▶ Output: some n s.t. $\neg \varphi(n,x)$ holds.
- WLEM_k cannot be presented as a Weihrauch problem.
 - ▶ There is no represented space of all propositions.
 - We need something like the object Ω of all propositions.
 - ▶ Thus, the notation $LLPO_k <_W WLEM_k$ does not make sense.

Def. (Bauer 2022, K. 2023). An extended Weihrauch problem is a partial multifunction $F :\subseteq \mathbb{N} \times \Lambda \Rightarrow \mathbb{N}$.

- $\triangleright \Lambda$ is a set.
- ▶ Each $p \in \mathbb{N}$ is called a *public input* (available for *Computer*).
- ▶ Each $\alpha \in \Lambda$ is called a *secret input* (*not* available for *Computer*).

Note:

This is just a predicate $F: A \to \Omega$, where A is regular projective.

Example:

Think of $WLEM_k$ as the following extended Weihrauch problem:

- ▶ Public input: Nothing.
- Secret input: A formula $\varphi(n,x)$ with a parameter x, where $\varphi(n,x)$ holds for at most one n < k.
- ▶ Output: some n s.t. $\neg \varphi(n,x)$ holds.

(K. 2023) Reduction game for extended Weihrauch problems:

```
Merlin
                                 Arthur
                                                        Nimue
(\mathbf{p}_0 \mid x_0) \in \mathrm{dom}(F)
                             Query: (\mathbf{q}_0 \mid \mathbf{z}_0) \in \mathbf{dom}(G)
     p_1 \in G(z_0)
                             Query: (q_1 \mid z_1) \in dom(G)
     p_2 \in G(z_1)
                             Query: (q_n \mid z_n) \in dom(G)
    p_{n+1} \in G(z_n)
                               Halt: q_{n+1} \in F(p_0 \mid x_0)
```

- Merlin's move is (p,x) or p; Nimue's move is z;
 and Arthur's move is either (Query, q) or (Halt, q).
 - ▶ Arthur cannot see "secrel" inputs and can only see "public" inputs, and Arthur can only perform computable procedures
 - ▶ Merlin and Nimue can see both "public" and "secret" inputs, and Merlin and Nimue can perform any procedure.
- ullet F is LT-reducible to $G \iff$ Arthur-Nimue has a winning strategy where Arthur's strategy is computable.

Thm. (Hendtlass-Lubarsky 2016)

IZF + DC does not prove $WLEM_{k+1} \rightarrow LLPO_k$.

Prop. (essentially, K. 2023 or folklore?)

(Any reasonable system) + MP does prove $WLEM_{k+1} \rightarrow LLPO_k$.

Thm. (essentially, K. 2023)

IZF + MP does not prove $WLEM_{k+2} \rightarrow LLPO_k$.

- Why?
 - ▶ (K. 2023) $LLPO_k \leq_{LT} WLEM_{k+1}$ and $LLPO_k \nleq_{LT} WLEM_{k+2}$.
- Indeed, we now have:
 - ▶ (K.) Indeed, $LLPO_k \nleq_{LT} WLEM_{k+2}^{\infty}$.

Theorem (K.)

IZF + DC + MP does not prove $WLEM_{k+2} \rightarrow LLPO_k$.

▶ Recall: *DC* is related to infinite loop (inverse limit) for multi-valued oracles.