Analysing Turing degree over intuititionistic logic

Takako Nemoto (joint work with Haoyi Zeng, Yannick Forster and Dominik Kirst)

Tohoku University

CCA 2025

Table of Contents

1 Intuitionistic logic and basic recursion theory

2 Oracles and Turing reducibility

3 Analyzing Turing degree

1 Intuitionistic logic and basic recursion theory

2 Oracles and Turing reducibility

Analyzing Turing degree

Intuitionistic logic

Intuitionistic logic

- Reasoning by contradiction is not allowed.
- In general, we cannot use non-constructive principles such as

LEM: $A \vee \neg A$;

DNE: $\neg \neg A \rightarrow A$ and

GDM: $\neg \forall i < nA(i) \rightarrow \exists i < n \neg A(i)$,

because they are proved by contradiction.

Formal systems $\mathbf{i} \mathbf{\Delta}_0(\exp)$ and $\mathbf{i} \mathbf{\Sigma}_1$

- Let L_1 be the language of first order arithmetic consisting of 0, 1, +, ·, exp, <.
- The class Δ_0 consists of formulae without unbounded quantifier. The classes Σ_n and Π_n are defined as usual.
- The system $i\Delta_0(\exp)$ consists of the following axioms:
 - Basic arithmetic

$$\begin{array}{ll} x+0=x; & x+(y+1)=(x+y)+1; \\ x\cdot 0=0; & x\cdot (y+1)=x\cdot y+x; \\ \exp(x,0)=1; & \exp(x,y+1)=\exp(x,y)\cdot y; \\ \neg (x< x); & x< y\wedge y< z\to x< z; \\ x< x+1; & x< y\to (x+1< y)\vee (x+1=y). \end{array}$$

 $ightharpoonup \Delta_0$ -IND

$$B(0) \wedge \forall x (B(x) \to B(x+1)) \to \forall x B(x), \text{ for } B \in \Sigma_1.$$

• $\mathbf{i}\Sigma_1 \equiv \mathbf{i}\Delta_0(\exp) + \Sigma_1\text{-IND}.$

What has been done?

Main reference:

Troelstra and van Dalen, Constructivism in Mathematics I (1988) [7],

- Definition of partial recursive functions
- 2 Enumeration theorem: There is a recursive function enumerating all n-ary partial recursive functions, i.e., there is an (n+1)-ary partial rec. function φ_z s.t. $\varphi_z(e,x_1,...,x_n) \simeq \varphi_e(x_1,...,x_n)$.
- **3** Normal form theorem: There is a recursive predicate T and primitive recursive function U such that $\varphi_e(x) = y \leftrightarrow U(\min z(Texz)) = y$. (so-called Kleene's T predicate and result-extracting function U)
- lacktriangledown smn theorem: There is a primitive recursive s such that

$$\forall x_1,...x_m, y_1,...,y_n(\varphi_e(x_1,...,x_m,y_1,...y_n) \simeq \varphi_{s(e,x_1,...x_m)}(y_1,...,y_n))$$

- **9** Recursion Theorem: For each recursive f, there is n such that $\forall x (\varphi_n(x) \simeq \varphi_{f(n)}(x)).$
- Formalization in ${\bf HA}$ and ${\bf EL}$ (needs only Σ_1 induction). (2)-(5) can be parameterized.

Recursively enumerable set and its property

Definition (Recursively enumerable set)

Let $W_e = \{x : \{e\}(x)\downarrow\} = \{x : \varphi_e(x)\downarrow\}.$

A set A is recursively enumerable (r.e.) if $A=W_e$ for some e.

For a set $A\subseteq \mathbb{N}$, the *characteristic function* of A is a *total* function $\chi_A:\mathbb{N}\to\{0,1\}$ s.t.

$$\chi_A(x) = \begin{cases} 0 & \text{if } x \in A; \\ 1 & \text{if } x \notin A. \end{cases}$$

Note

If we have the characteristic function χ_A for A, then we have

$$\forall x (x \in A \lor x \notin A).$$

Definition (Recursive set)

A set A is *recursive* if there is e s.t. $\chi_A = \{e\}$.

1 Intuitionistic logic and basic recursion theory

2 Oracles and Turing reducibility

3 Analyzing Turing degree

Oracles in computation

- For $\sigma \in 2^{<\omega}$, $\sigma \subset A$ means $\sigma(i) = \chi_A(i)$ for all $i < lh(\sigma)$.
- $\{e\}_s^A(x) = y$ if x, y, e < s, s > 0, $\{e\}_s^A(x) = y$ in < s steps according to the program coded by e, and only numbers z < s are used in the computation.
- The use function

$$u(A;e,x,s) = \begin{cases} 1 + \text{the maximal } n \text{ used in} \\ \text{the computation of } \{e\}^A(x) \end{cases} \quad \text{if } \{e\}^A_s(x) \downarrow; \\ 0 \quad \text{otherwise.} \end{cases}$$

• $\{e\}_s^{\sigma}(x)=y$ if $\{e\}_s^A(x)=y$ for some $A\supset\sigma$, and only $z< lh(\sigma)$ is used in the computation.

Use Principle

Let $W_{e,s}^A = \{x: \{e\}_s^A(x){\downarrow}\}$ and $W_{e,s} = W_{e,s}^\emptyset.$

Turing reducibility

Definition (Turing reducibility)

$$A \leq_T B \iff \text{there is } e \text{ s.t. } \forall x (\chi_A(x) = \{e\}(\chi_B, x) \stackrel{\text{def}}{=} \{e\}^B(x))$$

Definition (recursively enumerable in A)

B is r.e. in A is $B = W_e^A = \{x : \{e\}^A(x)\downarrow\}$ for some e.

Turing jump

Definition (Turing jump)

$$A' = \{x : \{x\}^A(x)\downarrow\}$$

Jump Theorem

- \bullet $A' \not\leq_T A$
- ② $B \leq_T A$ iff $B \leq_1^s A$, i.e., there is a total rec. function f s.t.

$$x \in B' \leftrightarrow f(x) \in A'$$
.

Post's problem

Is there any A s.t. $\emptyset \leq_T A \leq_T \emptyset'$?

Definition (Low set)

A set $A \leq_T \emptyset'$ is *low* if $A' \equiv_T \emptyset'$, i.e., $A \leq_T \emptyset'$ and $\emptyset' \leq_T A'$.

Oracles and law of excluded middle

Lemma

For any r.e. A, there is a total rec. function f s.t.

$$\forall x (x \in A \leftrightarrow f(x) \in \emptyset')$$

Lemma in other words

For any Σ_1 formula A(x) without set parameter, there is a total rec. function f s.t.

$$\forall x (A(x) \leftrightarrow \chi_{\emptyset'}(f(x)) = 0)$$

In particular, if we have $\chi_{\emptyset'}$, then $A \vee \neg A$ holds for any Σ_1 formula A without set parameters.

In general, if we have χ_B and $\{x:A(x)\}\leq_T \{x:B(x)\}$, then we have $\forall x(A(x)\vee \neg A(x))$.

1) Intuitionistic logic and basic recursion theory

2 Oracles and Turing reducibility

Analyzing Turing degree

Classical definitions simple sets and immune sets

Definition (Immune set and simple set)

- A is immune if
 - A is infinite;
 - $\forall e(W_e \text{ is infinite} \rightarrow W_e \not\subseteq A),$
- A is simple if
 - ► *A* is r.e.;
 - $\overline{A} = \{x : x \notin A\}$ is immune.

Post's construction of a simple set

Theorem (Post)

There is a simple set A.

Proof. Define sets A and S and a partial rec. ψ .

- $A = \{(e, x) : x \in W_e \land x > 2e\};$
- $\psi(e) = x$ iff $\exists u (Texu \land U(u) = x \land x > 2e);$
- $S = \operatorname{rang}(f)$.

Even constructively, we can prove the following holds.

- lacktriangledown A and S are r.e.
- $\begin{array}{l} \textcircled{9} \ \, \forall x \neg \neg \exists y > x (x \notin S). \\ \text{For each } e \text{ s.t. } \psi(e) \downarrow, \, \psi(e) > 2e. \, \, \text{Therefore} \\ |\{0,1,\ldots,2e\} \cap S| = |\{0,1,\ldots,2e\} \cap \{\psi(i):\psi(i) \downarrow \land i < e\}| < e \end{array}$

Constructive observation

What is a reasonable definition for immne/simple sets?

- A is weakly immune if
- $\forall x \neg \neg \exists y > x(y \in A):$
- $\forall e [\forall x \exists y > x(y \in W_e) \to \neg \neg \exists y \in W_e(y \notin A)],$
- A is weakly simple if
 - ► A is r.e.; ► $\overline{A} = \{x : x \notin A\}$ is weakly immune.
- A is immune if
 - $\forall x \exists y > x (y \in A);$
 - $\forall e [\forall x \exists y > x(y \in H)],$ $\forall e [\forall x \exists y > x(y \in W_e) \to \neg \neg \exists y \in W_e(y \notin A)],$
- A is simple if
 - ► *A* is r.e.;
 - $\forall x \exists y > x (y \notin A);$
- $\forall e[\forall x \exists y > x(y \in W_e) \to \exists y(y \in W_e \cap A)].$

Semi constructive results

- $\mathbf{i} \Delta_{\mathbf{0}}(\exp) \vdash$ "There is a weakly simple set A".
 - $i\Delta_0(\exp) + \Sigma_1^0$ -GDM \vdash "There is a simple set A".

Take a close look to classical finite injury method

Theorem (Friedberg-Muchnik)

There is a low simple set A.

For such A,

- ullet By simplicity, A is r.e. but not recursive.
- By lowness, $A' \leq_T \emptyset'$ and so $A \leq_T \emptyset'$.

Take a close look to classical finite injury method

Theorem (Friedberg-Muchnik)

There is a low simple set A.

For such A,

- ullet By simplicity, A is r.e. but not recursive.
- By lowness, $A' \leq_T \emptyset'$ and so $A \lneq_T \emptyset'$.

Proof.

Construct $A = \bigcup A_s$ as follows. Every A_s is recursive and so A is r.e.:

Stage s = 0 $A_0 = \emptyset$.

Stage s+1 Choose the least $i \leq s$ s.t.

- $W_{i,s} \cap A_s = \emptyset;$
- $\exists x [x \in W_{i,s} \land x > 2i \land (\forall e \leq i)[u(A_s; e, e, s) < x]].$

If such i exists, choose the least x satisfying 2 and let $A_{s+1} = A_s \cup \{x\}$. If such i does not exists, let $A_{s+1} = A_s$.

Stage
$$s = 0$$
 $A_0 = \emptyset$.

Stage s+1 Choose the least $i \leq s$ s.t.

- $W_{i,s} \cap A_s = \emptyset;$
- $\exists x [x \in W_{i,s} \land x > 2i \land (\forall j \le i)[u(A_s; j, j, s) < x]].$

If such i exists, choose the least x satisfying 2 and let $A_{s+1} = A_s \cup \{x\}$. If such i does not exists, let $A_{s+1} = A_s$.

Stage s = 0 $A_0 = \emptyset$.

Stage s+1 Choose the least $i \leq s$ s.t.

- $W_{i,s} \cap A_s = \emptyset;$
- $\exists x [x \in W_{i,s} \land x > 2i \land (\forall j \leq i)[u(A_s; j, j, s) < x]].$

If such i exists, choose the least x satisfying 2 and let $A_{s+1} = A_s \cup \{x\}$. If such i does not exists, let $A_{s+1} = A_s$.

Classical proof

 P_e : $\forall x \exists y > x(x \in W_e) \to \exists x(x \in W_e \cap A)$

 N_e : $\exists x (\lim_{s \to \infty} \{e\}_s^{A_s}(e) = x)$.

Stage
$$s = 0$$
 $A_0 = \emptyset$.

Stage s+1 Choose the least $i \leq s$ s.t.

- $W_{i,s} \cap A_s = \emptyset;$
- $\exists x [x \in W_{i,s} \land x > 2i \land (\forall j \leq i)[u(A_s; j, j, s) < x]].$

If such i exists, choose the least x satisfying 2 and let $A_{s+1} = A_s \cup \{x\}$. If such i does not exists, let $A_{s+1} = A_s$.

Classical proof

$$P_e: \forall x \exists y > x (x \in W_e) \to \exists x (x \in W_e \cap A)$$

$$N_e$$
: $\exists x (\lim_{s \to \infty} \{e\}_s^{A_s}(e) = x)$.

- $\forall eP_e$ guarantees simplicity.
 - ▶ $|\{0,1,\ldots,2e\}\cap A|\leq e$, which implies $\forall e\exists B\subset \overline{A}(|B|\geq e)$, and so $\forall x\exists y>x(x\in\overline{A})$.

Stage
$$s = 0$$
 $A_0 = \emptyset$.

Stage s+1 Choose the least $i \leq s$ s.t.

$$W_{i,s} \cap A_s = \emptyset;$$

$$\exists x [x \in W_{i,s} \land x > 2i \land (\forall j \leq i)[u(A_s; j, j, s) < x]].$$

If such i exists, choose the least x satisfying ② and let $A_{s+1} = A_s \cup \{x\}$. If such i does not exists, let $A_{s+1} = A_s$.

Classical proof

$$P_e$$
: $\forall x \exists y > x(x \in W_e) \to \exists x(x \in W_e \cap A)$

$$N_e$$
: $\exists x (\lim_{s \to \infty} \{e\}_s^{A_s}(e) = x)$.

- $\forall eP_e$ guarantees simplicity.
 - ▶ $|\{0,1,\ldots,2e\}\cap A|\leq e$, which implies $\forall e\exists B\subset \overline{A}(|B|\geq e)$, and so $\forall x\exists y>x(x\in\overline{A})$.
- $\forall eN_e$ guarantees lowness.
 - $\mathbf{p}(e,s) = \begin{cases} 1 & \text{if } \{e\}_s^{A_s}(e)\downarrow; \\ 0 & \text{otherwise.} \end{cases}$ is recursive and $\forall eN_e$ implies

$$\lim_{s\to\infty} g(e,s) = \hat{g}(e)$$
 exists for all e . Then $\hat{g} = \chi_{A'}$ and $\hat{g} \leq_T \emptyset'$.

Stage
$$s = 0$$
 $A_0 = \emptyset$.

Stage s+1 Choose the least $i \leq s$ s.t.

- $\exists x [x \in W_{i,s} \land x > 2i \land (\forall j \leq i)[u(A_s; j, j, s) < x]].$

If such i exists, choose the least x satisfying 2 and let $A_{s+1} = A_s \cup \{x\}$. If such i does not exists, let $A_{s+1} = A_s$.

Classical proof

$$P_e: \forall x \exists y > x(x \in W_e) \to \exists x(x \in W_e \cap A)$$
 (simplicity)

$$N_e$$
: $\exists x (\lim_{s \to \infty} \{e\}_s^{A_s}(e) = x)$. (lowness)

How to prove $\forall eP_e$ and $\forall eN_e$?

- $(\forall eN_e) \text{ Since } I_e = \{s: \{e\}_s^{A_s}(e) \not\simeq \{e\}_{s+1}^{A_{s+1}}(e)\} \text{ satisfies } |I_e| \leq 2e, \\ \hat{u}(e) = \lim_{s \to \infty} u(A_s; e, e, s) \text{ exists for each } e.$
- $(\forall eP_e)$ By induction, $\max\{\hat{u}(i): i \leq e\}$ is defined for each e. If $\forall x \exists y > x(y \in W_e)$, there is s_e s.t. $\exists x(x \in W_{e,s_e} \cap A_s)$.

What non-constructive principle are sufficient?

$$P_e$$
: $\forall x \exists y > x(x \in W_e) \to \exists x(x \in W_e \cap A)$
 N_e : $\exists x(\lim_{s \to \infty} \{e\}_s^{A_s}(e) = x)$.

- $\forall eP_e$ guarantees simplicity.
 - ▶ $|\{0,1,\ldots,2e\}\cap A|\leq e$, which implies $\forall x\neg\neg\exists y>x(y\notin A)$.
- $\forall eN_e$ guarantees lowness.

$$g(e,s) = \begin{cases} 1 & \text{if } \{e\}_s^{A_s}(e)\downarrow; \\ 0 & \text{otherwise.} \end{cases}$$
 is recursive.

 $\forall eN_e \text{ implies } \lim_{s \to \infty} g(e,s) = \hat{g}(e) \text{ exists for all } e.$ Then $\hat{q} = \chi_{A'}$ and $\hat{q} <_T \emptyset'.$

How to prove $\forall eP_e$ and $\forall eN_e$?

$$(\forall eN_e) \text{ Since } I_e = \{s: \{e\}_s^{A_s}(e) \not\simeq \{e\}_{s+1}^{A_{s+1}}(e)\} \text{ satisfies } |I_e| \leq 2e, \\ \text{by } \Sigma_1^0\text{-BCA}, \ \hat{u}(e) = \lim_{s \to \infty} u(A_s; e, e, s) \text{ exists for each } e.$$

(
$$\forall eP_e$$
) By Σ_1^0 -BCA, $\max\{\hat{u}(i): i \leq e\}$ is defined for each e .
If $\forall x \exists y > x(y \in W_e)$, there is s_e s.t. $\exists x(x \in W_{e,s_e} \cap A_s)$.

Logical principles used

 Σ_1 -BCA $\forall e \exists t \in \{0,1\}^e (\forall i < e)[t(i) = 0 \leftrightarrow A(x)] \text{ for } A(x) \in \Sigma_1.$

Decomposition of Σ_1^0 -BCA

The following are equivalent over $i\Delta_0(\exp)$.

- Σ₁-BCA;
 Δ(Σ₁)-IND + Δ(Σ₁)-LEM;

where $\Delta(\Sigma_1)$ is the smallest class containing Σ_1 and closed under $\land, \lor, \rightarrow, \forall x < t, \exists x < t \text{ and } \Gamma\text{-LEM}$ is $A \lor \neg A$ for $A \in \Gamma$.

How BCA works?

The following are equivalent over $i\Delta_0(\exp)$:

- Σ_1 -BCA;
 - For any $A \in \Sigma_1$, $\exists x(|A| = x) \to \exists x \forall y \in A(y < x)$;
 - For any $B \in \Delta_1$, $\forall e \exists x \forall i < e(\exists y B(i,y) \rightarrow \exists y < x B(i,y))$.

Constructive observation

The construction of r.e. $\cal A$ needs no non-constructive principles.

Stage s = 0 $A_0 = \emptyset$.

Stage s+1 Choose the least $i \leq s$ s.t.

$$W_{i,s} \cap A_s = \emptyset;$$

$$\exists x [x \in W_{i,s} \land x > 2i \land (\forall j \leq i)[u(A_s; j, j, s) < x]].$$

Weaken non-constructive principle as much as possible

There is a $B(x) \in \Sigma_1$ satisfying the following:

- $\mathbf{i}\Delta_{\mathbf{0}}(\exp) \vdash \forall x \exists s \in \{0,1\}^x \forall i < x(s_i=0 \leftrightarrow B(i)) \rightarrow$
 - "A is a low and simple set".
 - $\mathbf{i}\Delta_{\mathbf{0}}(\exp) \vdash \forall x \exists s \in \{0,1\}^x \forall i < x(s_i = 0 \leftrightarrow B(i)) \rightarrow \neg \exists e(\chi_{\emptyset'} = \{e\}^A)$
 - $\mathbf{i}\Delta_{\mathbf{0}}(\exp) + \Delta(\Sigma_{1})\text{-IND} \vdash \forall x(B(x) \lor \neg B(x)) \to \neg \exists e(\chi_{\emptyset'} = \{e\}^{A})$ • $\mathbf{i}\Delta_{\mathbf{0}}(\exp) + \Delta(\Sigma_{1})\text{-IND} \vdash \neg \neg \forall x(B(x) \lor \neg B(x)) \to \neg \exists e(\chi_{\emptyset'} = \{e\}^{A})$

Theorem

 $\mathbf{i}\Delta_{\mathbf{0}}(\exp) + \Delta(\Sigma_1)\text{-IND} + \neg \neg(\Sigma_1\text{-LEM}) \vdash \neg \exists e(\chi_{\emptyset'} = \{e\}^A),$ where $\neg \neg(\Gamma\text{-LEM})$ is $\neg \neg \forall x(B(x) \lor \neg B(x))$ for $B \in \Gamma$.

Constructive observation

The construction of r.e. A needs no non-constructive principles.

Stage s = 0 $A_0 = \emptyset$.

Stage s + 1 Choose the least $i \leq s$ s.t.

$$\exists x [x \in W_{i,s} \land x > 2i \land (\forall j \leq i)[u(A_s; j, j, s) < x]].$$

Lemma

 $\mathbf{i} \Delta_{\mathbf{0}}(\exp) + \Pi_1 \text{-IND} \vdash \forall x \neg \neg \exists s \in \{0, 1\}^x \forall i < x (s_i = 0 \leftrightarrow B(i)), \text{ for } B \in \Sigma_1.$

Weaken induction as much as possible

- There is a $B(x) \in \Sigma_1$ satisfying the following:
 - $\mathbf{i}\Delta_{\mathbf{0}}(\exp) \vdash \forall x \exists s \in \{0,1\}^x \forall i < x(s_i = 0 \leftrightarrow B(i)) \rightarrow$
 - "A is a low and simple set". $\mathbf{i}\Delta_{\mathbf{0}}(\exp) \vdash \neg\neg \forall x \exists s \in \{0,1\}^x \forall i < x(s_i=0 \leftrightarrow B(i)) \rightarrow \neg \exists e(\chi_{\emptyset'}=\{e\}^A)$

Theorem

 $\mathbf{i}\Delta_{\mathbf{0}}(\exp) + \Pi_{1}\text{-IND} + \Delta(\Sigma_{1})\text{-DNS} \vdash \neg \exists e(\chi_{\emptyset'=\{e\}^{A}}),$ where $\Gamma\text{-DNS}$ is $\forall x \neg \neg C(x) \rightarrow \neg \neg \forall x C(x)$ for $C \in \Gamma$.

or $C \in \Gamma$.

A classical construction of two incomparable degrees

Define two sequences $\{f_s\}_s$ and $\{g_s\}_s$ of $2^{<\mathbb{N}}$ as follows:

- $\bullet \quad \text{For } s = 0, \text{ let } f_0 = g_0 = \langle \rangle.$
- 2 At stage s = 2e + 1: Let $n = lh(f_s)$.
 - If $\exists t \exists \sigma (\sigma \supseteq g_s \land \{e\}_t^{\sigma}(n)\downarrow)$, take the least such pair (σ,t) and let $g_{s+1} = \sigma$, $f_{s+1} = f_s * \langle 1 \{e\}_t^{\sigma}(n) \rangle$.
- **3** At stage s=2e+2: Do the same but with the roles of f_s and g_s are interchanged.

By Σ_2 -IND, each f_s and g_s are defined and have length $\geq s$, $f_s \subseteq f_{s+1}$ and $g_s \subseteq g_{s+1}$.

By the construction, $f = \bigcup_s f_s$ and $g = \bigcup_s g_s$ satisfy

$$f(lh(f_s)) \neq \{e\}^g(lh(f_s))$$
 $g(lh(g_{s+1})) \neq \{e\}^f(lh(g_{s+1}))$

for each e = 2s + 1.

Constructive observation

The previous proof shows that

$$\forall e \forall s \forall n (\exists t \exists \sigma \supsetneq s\{e\}_t^{\sigma}(n) \downarrow) \vee \neg \exists t \exists \sigma \supsetneq s(\{e\}_t^{\sigma}(n) \downarrow) \rightarrow$$
 "there are two incomparable degrees below \emptyset' "

Theorem

 $\mathbf{i}\Sigma_2 + \Sigma_1\text{-LEM} \vdash$ "there are two incomparable degrees below \emptyset' ".

Some observation and future work

- $\forall x \neg \neg \exists y > x(y \in A)$ is a weak notion of infiniteness. $\forall x \neg \neg \exists y > x(y \in A) \rightarrow \forall x \exists y > x(y \in A)$ for $A \in \Sigma_1$ is equivalent to Σ_1 -DNE.
- This seems to be a refinement of the result by Groszek and Slaman [2], which states that Friedberg-Muchnik construction can be formalized in $I\Sigma_1$.
- In [6], it is shown that A s.t. $\emptyset \lneq_T A \lneq_T \emptyset'$ exists in every model of $\mathrm{I}\Delta_0(\exp)$.
 - What non-constructive principle is need for it?
- Considering complement in constructive setting, Bishop [1] suggested the notion of complemented set:
 - ▶ Complemented set is a pair $A = (A_0, A_1)$ of sets $A_i \subseteq \mathbb{N}$ s.t. each $x \in A_0$ and $y \in A_1$ there is $f : \mathbb{N} \to \mathbb{R}$ with $f(x) \neq f(y)$.
 - $x \in A$ means $x \in A_0$ and $x \notin A$ means $x \in A_1$.

This is a way to treat $x \notin A$ in a positive way.

It might be useful in our setting, but I have not yet found such examples.

• And much more things to do!

References

- **1** E. Bishop, Foundations of Constructive Analysis, Academic Press (1967).
- ② M. J. Groszek and T. A. Slaman, Foundations of the priority method I-finite injury and infinite injury, preprint.
- 3 T. Nemoto, Finite sets and infinite sets in weak intuitionistic arithmetic, Arch. Math. Logic 59, pp. 607–657, (2020)
- T. Nemoto and K. Sato, A marriage of Brouwer's Intuitionism and Hilbert's Finitism I: Arithmetic, The Journal of Symbolic Logic, 87 (2), pp.437-497 (2022) doi:10.1017/jsl.2018.6
- **1987.** R. Soare, *Recursively Enumerable Sets and Degrees*, Springer-Verlag, 1987.
- **10** T.A. Slaman and W. H. Woodin, Σ_1 -collection and the finite injury priority method, Mathematical logic and its applications, Lecture notes in Mathematics, vol. 1388, Springer-Verlag, Berlin, 1989.
- A. Troelstra, D. van Dalen, Constructivism in Mathematics vol. I, Elsevier, 1988

Acknowledgment

The authors thank the Japan Society for the Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks) and the funding 24K06823 for supporting the research.