Constructible Failures of the Erdős-Volkmann-Problem for Rings

Linus Richter

National University of Singapore

25 September, 2025

Computability and Complexity in Analysis 2025 RIMS Kyoto, Japan

This research was fully supported by Singapore Ministry of Education Grant no. MOE-000538-01.

Question (Erdős-Volkmann-Ring Problem)

Is there a subring R of $(\mathbb{R}, +, \times, 0, 1)$ such that $\dim_H(R) \neq 0, 1$?

Question

What does this mean?

Descriptive set theory can answer questions about provability.

Fact

Every subset of \mathbb{R} has a Hausdorff dimension.

This dimension can be computed via prefix-free Kolmogorov K complexity and information density: for $x \in 2^{\omega}$ define

$$\dim(x) = \liminf_{n \to \infty} \frac{K(x \upharpoonright_n)}{n}.$$

J. Lutz and N. Lutz proved the following general identification:

Theorem (J. Lutz, N. Lutz (2018))

For every $A \subseteq \mathbb{R}$ we have

$$\dim_{H}(A) = \min_{B \in 2^{\omega}} \sup_{x \in A} \dim^{B}(x).$$

Definition

An uncountable set $A \subseteq \mathbb{R}$ has the perfect set property (PSP) if it contains a non-empty perfect subset.

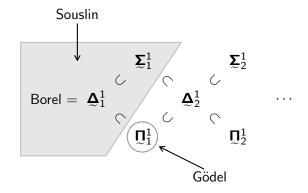
Question

Is there an uncountable set $A \subseteq \mathbb{R}$ which does not contain an uncountable subset?

Answer

It's complicated.

Axioms	Behaviour
ZF + DC	PSP holds for all $\sum_{i=1}^{1}$ sets (Souslin)
ZFC	PSP fails for some set (Bernstein)
ZF + DC + AD	PSP holds for all sets (Mycielski, Swierczkowski)
ZFC + (V = L)	PSP fails for some $\overline{\mathbb{Q}}_1^1$ set (Gödel)



Theorem (P. Erdős, B. Volkmann, 1966)

For every $\alpha \in (0,1)$ there exists a Borel subgroup $G \subseteq (\mathbb{R},+)$ for which $\dim_H(G) = \alpha$.

This means, G as a subset of \mathbb{R} is a Borel set.

Question

What about subrings of \mathbb{R} ?

Theorem (Edgar-Miller, 2001; Bourgain, 2003)

If $R \subseteq (\mathbb{R}, +, \times, 0, 1)$ is an analytic (i.e. Σ_1^1) subring then:

- either $\dim_H(R) = 0$
- or $R = \mathbb{R}$.

This means, R as a subset of \mathbb{R} is an analytic set.

Theorem (R. D, Mauldin, 2016 (R. O. Davies, 1984))

(CH) For every $\alpha \in (0,1)$ there exists a subring $R \subseteq (\mathbb{R},+,\times,0,1)$ such that $\dim_H(R) = \alpha.$

In fact,
$$R$$
 is a subfield. It cannot be Σ_1^1 .

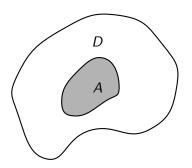
Mauldin comments: V=L implies the subring can be made Σ_2^1 .

Question

What is the descriptive complexity of such a subring? Assuming V=L, can it be Π_1^1 ?

Fact

If $A \subseteq \mathbb{R}$ satisfies $\dim_H(A) = \alpha$ then there exists a G_δ set $D \subseteq \mathbb{R}$ $\dim_H(D) = \alpha$ and $A \subseteq D$.



Fact

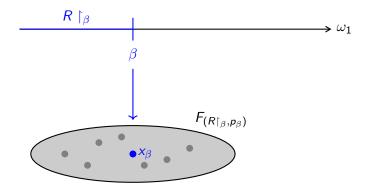
If A is not contained in any G_{δ} set of Hausdorff dimension less than α , then $\dim_H(A) \geq \alpha$.

Generalising an idea of Erdős, K. Kunen, and Mauldin (1981), and A. Miller (1989):

Theorem (Z. Vidnyánszky, 2014)

$$(V=L)$$
 Let $P\subseteq 2^{\omega}$ be uncountable Boreluncountable Borel.
 If $F\subseteq \mathbb{R}^{\omega}\times 2^{\omega}\times \mathbb{R}$ is Π_1^1 and for every $(A,p)\in \mathbb{R}^{\omega}\times 2^{\omega}$, the section $F_{(A,p)}$ is cofinal in \leq_T , then there exists a Π_1^1 set $R\subseteq \mathbb{R}$ such that

$$P = \{p_{\beta} \mid \beta < \omega_1\}$$
 and $R = \{x_{\beta} \mid \beta < \omega_1\}$ and $x_{\beta} \in F_{(R \upharpoonright_{\beta}, p_{\beta})}$.



Theorem (R.)

For $\alpha \in (0,1)$, the set

$$\{c \mid c \text{ is a } G_{\delta} \text{ Borel code for } A \text{ and } \dim_{H}(A) \geq \alpha\}$$

Corollary

For
$$\alpha \in (0,1)$$
, the set

is Σ_1^1 -complete.

 $\{c \mid c \text{ is a } G_{\delta} \text{ Borel code for A and } \dim_H(A) < \alpha\}$

is Π_1^1 -complete.

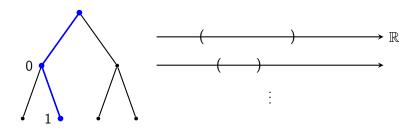
Proof (hardness)

Reduce a tree T on ω to a suitable Borel code. The idea:

• A path $x \in [T]$ yields an infinite sequence of nested intervals:

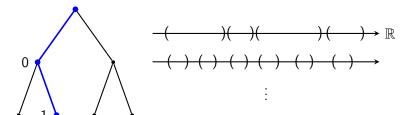
$$\langle 1,2,3,\dots\rangle \mapsto \langle (0.1,0.2), (0.12,0.13), (0.123,0.124),\dots\rangle$$

These can be placed on distinct levels in the Borel code:



Proposition (R.)

Fix $\alpha \in (0,1)$. Any infinite path $x \in [T]$ codes a G_{δ} set $A_x \subset \mathbb{R}$ such that $\dim_H(A_x) \geq \alpha$.



Proof (membership)

Definition

 $B \in 2^{\omega}$ is a Hausdorff oracle for $A \subseteq \mathbb{R}$ if

$$\dim_H(A) = \sup_{x \in A} \dim^B(x).$$

Let A be G_{δ} . Using the point-to-set principle,

$$\dim_{H}(A) \ge \alpha \iff (\forall n < \omega)(\exists x \in A) \left(\dim^{B}(x) > \alpha - 2^{-n}\right)$$

where B is a Hausdorff oracle for A.

Fact

If $A \subseteq \mathbb{R}$ satisfies $\dim_H(A) = \alpha$ then there exists a compact set $K \subseteq A$ such that

$$\dim_H(K) = \alpha$$
 and $K \subseteq A$.

Every compact set K is effectively compact relative to some oracle B; then, B is a Hausdorff oracle for K (J. Hitchcock, J. Lutz; D. Stull). Thus,

$$\begin{split} \dim_H(A) &\geq \alpha \iff \\ &(\exists K \text{ compact})(\forall n < \omega)(\exists B)(\exists x \in K) \\ &\left(K \subseteq A \land B \text{ is Hausdorff for } K \land \dim^B(x) > \alpha - 2^{-n}\right). \end{split}$$

Proposition (R.)

This clause is Σ_1^1 in the Borel code of A.

What about a "direct" construction?

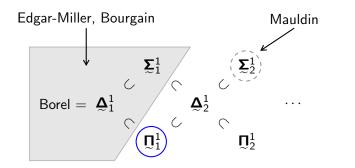
- What are the conditions?
 By the previous theorem, the set of all sufficiently simple G_δ sets is Π₁¹ complete, hence not Borel, hence too complicated.
- Can one build R real by real, by the point-to-set principle?
 This is difficult to apply since we must close under + and ×.
 And since Q ⊂ R, we cannot make use of compactness.
- Even then, we add countably many reals at every step. For every x we enumerate into our subring, we must close under all ring-theoretic operations, which yields (under CH) countably many reals to add. A Π_1^1 basis B gives a Σ_2^1 subring R:

$$x \in R \iff (\exists y \in B)(x \text{ is generated by } y).$$

Question

Is there a subring $R \subseteq (\mathbb{R}, +, \times, 0, 1)$ *with* $\dim_H(R) \neq 0, 1$?

Axioms	Behaviour
ZF + DC	Not in $\sum_{i=1}^{n}$ (Edgar-Miller, Bourgain)
ZFC	Yes (Mauldin, Davies)
ZF + DC + AD	??
ZFC + (V = L)	Yes in $\mathbf{\Sigma}_{2}^{1}$ (Mauldin's comment)



[We] state these results in terms of Borel sets because that is how much we can prove in ZFC, but they are not really about Borel sets. All of this holds for all constructible sets in $L(\mathbb{R})$ if one assumes the large-cardinal hypothesis and for all sets if one assumes [...] AD and forgets about the axiom of choice.

A. Montalbán on Martin's conjecture NAMS 66(8), 2019

Thank you