A Verified Power-Series Method for Multivariate IVPs

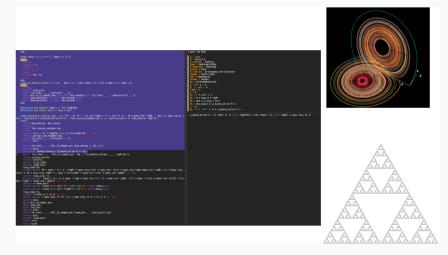
Holger Thies

Kyoto University

Twenty-Second International Conference on Computability and Complexity in Analysis
September 24-26, 2025
RIMS, Kyoto University, Kyoto, Japan

Computation and Formal Proof

A **proof assistant** is an <u>interactive</u> tool for writing and checking formal proofs.



Ordinary Differential Equations (ODEs)

In this talk we consider initial value problems (IVPs) for ordinary differential equations (ODEs). An IVP is an ODE together with an initial condition at

$$\dot{\vec{y}}(t) = \vec{F}(t, \vec{y}(t)), \quad \vec{y}(t_0) = \vec{y}_0, \quad \vec{F}: D \subseteq \mathbb{R}^{d+1} \to \mathbb{R}^d.$$

A solution is a differentiable function $\vec{y}:I\to\mathbb{R}^d$, where $I\subseteq\mathbb{R}$ is an open interval containing t_0 , that satisfies the IVP.

Ordinary Differential Equations (ODEs)

In this talk we consider initial value problems (IVPs) for ordinary differential equations (ODEs). An IVP is an ODE together with an initial condition at

$$\dot{\vec{y}}(t) = \vec{F}(t, \vec{y}(t)), \quad \vec{y}(t_0) = \vec{y}_0, \quad \vec{F}: D \subseteq \mathbb{R}^{d+1} \to \mathbb{R}^d.$$

A solution is a differentiable function $\vec{y}:I\to\mathbb{R}^d$, where $I\subseteq\mathbb{R}$ is an open interval containing t_0 , that satisfies the IVP.

Remarks:

- Higher-order ODEs $\vec{y}^{(k)} = \vec{G}(t, \vec{y}, \dots, \vec{y}^{(k-1)})$ can be rewritten as a first-order ODEs by introducing additional variables for the higher derivatives $\vec{y}^{(2)}, \dots, \vec{y}^{(k)}$.
- ullet Any ODE can be turned into an equivalent autonomous ODE by adding t as additional variable.
- By translation, one can assume $t_0=0$ and $\vec{y}_0=\vec{0}$ without loss of generality.

ODE solving in Proof Assistants

The problem is a natural candidate for formal verification:

- It is a classical topic in analysis with many applications in science and engineering.
- Most ODEs do not have a closed-form solution, therefore numerical methods are required to approximate solutions.
- Guaranteeing correctness of these approximations is important for safety-critical applications.

Although other proof assistants (e.g. Isabelle/HOL) include substantial formalizations of ODE theory and numerical methods, not so much is available in Rocq so far.

• The CoRN library includes an implementation of the Picard Iteration method. [1]

^[1] Makarov & Spitters. The Picard algorithm for ordinary differential equations in Coq, Proc. of ITP 2013.

 $[\]hbox{\cite{thirder} $\tt [2]$ Park \& T. A Coq Formalization of Taylor Models and Power Series for Solving ODEs, Proc. of ITP 2024.}$

Although other proof assistants (e.g. Isabelle/HOL) include substantial formalizations of ODE theory and numerical methods, not so much is available in Rocq so far.

- The CoRN library includes an implementation of the Picard Iteration method. [1]
- cAERN has a solver for one-dimensional polynomial ODEs. [2]

^[1] Makarov & Spitters. The Picard algorithm for ordinary differential equations in Coq, Proc. of ITP 2013.

 $[\]hbox{\cite{thirder} $\tt [2]$ Park \& T. A Coq Formalization of Taylor Models and Power Series for Solving ODEs, Proc. of ITP 2024.}$

Although other proof assistants (e.g. Isabelle/HOL) include substantial formalizations of ODE theory and numerical methods, not so much is available in Rocq so far.

- The CoRN library includes an implementation of the Picard Iteration method. [1]
- cAERN has a solver for one-dimensional polynomial ODEs. [2]
- A few other works deal with specific systems or algorithms, but do not formalize a general theory.

- [1] Makarov & Spitters. The Picard algorithm for ordinary differential equations in Coq, Proc. of ITP 2013.
- [2] Park & T. A Coq Formalization of Taylor Models and Power Series for Solving ODEs, Proc. of ITP 2024.

Although other proof assistants (e.g. Isabelle/HOL) include substantial formalizations of ODE theory and numerical methods, not so much is available in Rocq so far.

- The CoRN library includes an implementation of the Picard Iteration method. [1]
- cAERN has a solver for one-dimensional polynomial ODEs. [2]
- A few other works deal with specific systems or algorithms, but do not formalize a general theory.

- [1] Makarov & Spitters. The Picard algorithm for ordinary differential equations in Coq, Proc. of ITP 2013.
- [2] Park & T. A Coq Formalization of Taylor Models and Power Series for Solving ODEs, Proc. of ITP 2024.

Although other proof assistants (e.g. Isabelle/HOL) include substantial formalizations of ODE theory and numerical methods, not so much is available in Rocq so far.

- The CoRN library includes an implementation of the Picard Iteration method. [1]
- cAERN has a solver for one-dimensional polynomial ODEs. [2]
- A few other works deal with specific systems or algorithms, but do not formalize a general theory.

Since Rocq is based on constructive logic, a constructive/computable formalization is natural.

^[1] Makarov & Spitters. The Picard algorithm for ordinary differential equations in Coq, Proc. of ITP 2013.

^[2] Park & T. A Coq Formalization of Taylor Models and Power Series for Solving ODEs, Proc. of ITP 2024.

Computability and Complexity of ODEs

Assume
$$f:[0,1]\times[-1,1]\to\mathbb{R}$$
 and consider the IVP $\dot{y}(t)=f(t,y(t));y(0)=0$

Assumptions on f	Computability/Complexity of Solution
(Polynomial-time) computable	All solutions can be non-computable [3]
+ Unique solution	Computable, but complexity can be arbitrarily high [4]
+ Lipschitz continuous	PSPACE complete [5]
+ Analytic	Solution is polynomial-time computable [6]

^[3] Aberth, The failure in computable analysis of a classical existence theorem for differential equations, 1971.

 $\hbox{ [6] M\"{u}ller \& Moiske, Solving initial value problems in polynomial time, Proc. of JAIIO-Panel '93, 1993. }$

^[4] Ko, On the computational complexity of ordinary differential equations, Journal of Computer and System Sciences, 1983.

^[5] Kawamura, Lipschitz Continuous Ordinary Differential Equations are Polynomial-Space Complete, Comp. Complexity, 2010.

The Cauchy-Kovalevskaya Theorem

Theorem (ODE version of the Cauchy-Kovalevskaya Theorem)

Let $U\subseteq\mathbb{R}^d$ be open and $f:U\to\mathbb{R}^d$ analytic. Then the initial value problem

$$\dot{\vec{y}}(t) = \vec{F}(\vec{y}(t)), \quad \vec{y}(0) = \vec{y}_0$$

has a unique solution which is analytic on an open interval $I\subseteq\mathbb{R}$ containing 0.

The Cauchy-Kovalevskaya Theorem

Theorem (ODE version of the Cauchy-Kovalevskaya Theorem)

Let $U\subseteq \mathbb{R}^d$ be open and $f:U\to \mathbb{R}^d$ analytic. Then the initial value problem

$$\dot{\vec{y}}(t) = \vec{F}(\vec{y}(t)), \quad \vec{y}(0) = \vec{y}_0$$

has a unique solution which is analytic on an open interval $I \subseteq \mathbb{R}$ containing 0.

Main idea of the classical proof:

- Expand $\vec{F}(\vec{y})$ in a formal power series around $\vec{y_0}$.
- Derive a recurrence for the Taylor coefficients of $\vec{y}(t)$ from the ODE $\dot{\vec{y}}=\vec{F}(\vec{y})$.
- Prove that the formal series has a positive radius of convergence by dominating it by a geometric <u>majorant sequence</u>.

Formal Power Series Solution

Let

$$\dot{\vec{y}}(t) = \vec{F}(\vec{y}(t)), \quad \vec{y}(0) = \vec{y}_0.$$

We inductively define a sequence of functions $\vec{F}^{[n]}:\mathbb{R}^d o \mathbb{R}^d$ of multivariate functions by

$$ec{F}^{[0]}(ec{x})=ec{x}$$
 , and
$$ec{F}^{[n+1]}(ec{x})=J_{ec{F}^{[n]}}(ec{x})\cdotec{f}(ec{x})$$

Define a function by the formal power series

$$\vec{y}(t) = \sum_{i=0}^{\infty} \frac{1}{n!} \vec{F}^{[n]}(\vec{y_0}) t^n$$

By deriving \vec{y} (as formal power series) and comparing coefficients, we see that \vec{y} satisfies the IVP.

Formal Power Series Solution

Let

$$\dot{y}(t) = F(y(t))$$
 $\dot{ec{y}}(t) = ec{F}(ec{y}(t)), \quad ec{y}(t) = \dot{y}(t) \cdot F'(y(t))$
 $\ddot{y}(t) = \dot{y}(t) \cdot F'(y(t))$
 $= F(y(t)) \cdot F'(y(t))$

We inductively define a sequence of functions $ec{F}^{[n]}$

$$ec{F}^{[0]}(ec{x})=ec{x}$$
 , and
$$ec{F}^{[n+1]}(ec{x})=J_{ec{F}^{[n]}}(ec{x})$$

Define a function by the formal power series

$$\vec{y}(t) = \sum_{i=0}^{\infty} \frac{1}{n!} \vec{F}^{[n]}(\vec{y_0}) t^n$$

By deriving \vec{y} (as formal power series) and comparing coefficients, we see that \vec{y} satisfies the IVP.

• A (single-variate) power series $M(x)=\sum_{k=0}^\infty A_k x^k$ is said to majorize a d-variate power series $f(x)=\sum_{\alpha\in\mathbb{N}^d}a_\alpha x^\alpha$ if

$$\forall k \in \mathbb{N}, \quad \sum_{|\alpha|=k} \left|a_{\alpha}\right| \ \leq \ A_k, \quad \text{where } |\alpha| = \sum_{i=1}^d \alpha_i.$$

• A (single-variate) power series $M(x)=\sum_{k=0}^\infty A_k x^k$ is said to majorize a d-variate power series $f(x)=\sum_{\alpha\in\mathbb{N}^d}a_\alpha x^\alpha$ if

$$\forall k \in \mathbb{N}, \quad \sum_{|\alpha|=k} \left|a_{\alpha}\right| \leq A_{k}, \quad \text{where } |\alpha| = \sum_{i=1}^{d} \alpha_{i}.$$

• If R is the radius of convergence of M then f converges absolutely on the polydisc $\{\mathbf{x} \in \mathbb{R}^d : \max_{1 \le i \le d} |x_i| < R\}.$

• A (single-variate) power series $M(x)=\sum_{k=0}^\infty A_k x^k$ is said to majorize a d-variate power series $f(x)=\sum_{\alpha\in\mathbb{N}^d}a_\alpha x^\alpha$ if

$$\forall k \in \mathbb{N}, \quad \sum_{|\alpha|=k} \left|a_{\alpha}\right| \leq A_{k}, \quad \text{where } |\alpha| = \sum_{i=1}^{d} \alpha_{i}.$$

- If R is the radius of convergence of M then f converges absolutely on the polydisc $\{\mathbf{x} \in \mathbb{R}^d : \max_{1 \le i \le d} |x_i| < R\}.$
- We are mostly interested in simple (geometric) majorants of the form $\sum_{k=0}^{\infty} MR^k$ for constant $M, R \in \mathbb{R}$.

• A (single-variate) power series $M(x)=\sum_{k=0}^\infty A_k x^k$ is said to <u>majorize</u> a d-variate power series $f(x)=\sum_{\alpha\in\mathbb{N}^d}a_\alpha x^\alpha$ if

$$\forall k \in \mathbb{N}, \quad \sum_{|\alpha|=k} \left|a_{\alpha}\right| \ \leq \ A_{k}, \quad \text{where } |\alpha| = \sum_{i=1}^{d} \alpha_{i}.$$

- If R is the radius of convergence of M then f converges absolutely on the polydisc $\{\mathbf{x} \in \mathbb{R}^d : \max_{1 \le i \le d} |x_i| < R\}.$
- We are mostly interested in simple (geometric) majorants of the form $\sum_{k=0}^{\infty} MR^k$ for constant $M, R \in \mathbb{R}$.
- In that case, the tail of the series satisfies

$$\left| \sum_{|\alpha| > k} a_{\alpha} x^{\alpha} \right| \leq M \sum_{n=k+1}^{\infty} (R||x||)^{n} = M \frac{(R||x||)^{k+1}}{1 - R||x||}, \quad (R||x|| < 1).$$

• We can show that if the right-hand side function $f:\mathbb{R}^d\to\mathbb{R}^d$ has a geometric majorant (M,R) then (1,2dMR) works as a geometric majorant for the solution y, guaranteeing convergence of y(t) for all t with $|t|<\frac{1}{2dMR}$.

- We can show that if the right-hand side function $f:\mathbb{R}^d\to\mathbb{R}^d$ has a geometric majorant (M,R) then (1,2dMR) works as a geometric majorant for the solution y, guaranteeing convergence of y(t) for all t with $|t|<\frac{1}{2dMR}$.
- Example:

$$\dot{y}(t) = y(t)^2 \; ; \; y(0) = 1.$$

- We can show that if the right-hand side function $f:\mathbb{R}^d\to\mathbb{R}^d$ has a geometric majorant (M,R) then (1,2dMR) works as a geometric majorant for the solution y, guaranteeing convergence of y(t) for all t with $|t|<\frac{1}{2dMR}$.
- Example:

$$\dot{y}(t) = y(t)^2 \; ; \; y(0) = 1.$$

• The Taylor series around 1 has coefficients -1, 2, 1, thus R=1, M=2 can be used for the bounds.

- We can show that if the right-hand side function $f:\mathbb{R}^d\to\mathbb{R}^d$ has a geometric majorant (M,R) then (1,2dMR) works as a geometric majorant for the solution y, guaranteeing convergence of y(t) for all t with $|t|<\frac{1}{2dMR}$.
- Example:

$$\dot{y}(t) = y(t)^2 \; ; \; y(0) = 1.$$

- The Taylor series around 1 has coefficients -1, 2, 1, thus R=1, M=2 can be used for the bounds.
- We get radius $\frac{1}{4}$ for the solution, while the actual solution $y(t) = \frac{1}{1-t}$ has radius 1.

- We can show that if the right-hand side function $f: \mathbb{R}^d \to \mathbb{R}^d$ has a geometric majorant (M,R) then (1,2dMR) works as a geometric majorant for the solution y, guaranteeing convergence of y(t) for all t with $|t|<\frac{1}{2dMR}$.
- Example:

$$\dot{y}(t) = y(t)^2 \; ; \; y(0) = 1.$$

- The Taylor series around 1 has coefficients -1, 2, 1, thus R=1, M=2 can be used for the bounds.
- We get radius $\frac{1}{4}$ for the solution, while the actual solution $y(t) = \frac{1}{1-t}$ has radius 1.
- On the other hand for

$$\dot{y}(t) = \frac{1}{1 - y(t)} = \sum_{k=0}^{\infty} y(t)^k \; ; \; y(0) = 0$$

we get radius $\frac{1}{2}$ which is identical to the actual radius of the solution

$$y(t) = 1 - \sqrt{1 - 2t}.$$

Polynomial IVPs

- ODEs with polynomial right-hand side are an important special case.
- Polynomials allow efficient implementations of evaluation and other operations.
- As the coefficient sequence is finite, majorant bounds can be computed automatically.
- Many analytic ODEs (including all systems built from elementary functions) can be rewritten as polynomial ODEs by increasing the dimension.

Polynomial IVPs

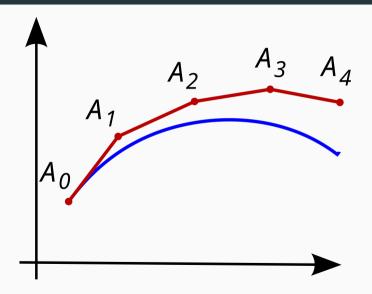
- ODEs with polynomial right-hand side are an important special case.
- Polynomials allow efficient implementations of evaluation and other operations.
- As the coefficient sequence is finite, majorant bounds can be computed automatically.
- Many analytic ODEs (including all systems built from elementary functions) can be rewritten as polynomial ODEs by increasing the dimension.

Example: $y_1' = \frac{1}{2y_1}$; $y_1(0) = 1$ The IVP has the solution $y_1(x) = \sqrt{x+1}$.

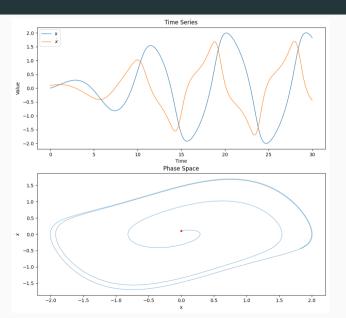
Introduce auxiliary variable $y_2 = \frac{1}{y_1}$ to obtain:

$$\dot{y_1} = \frac{1}{2} y_2,$$
 $y_1(0) = 1,$ $\dot{y_2} = -\frac{1}{2} y_2^3,$ $y_2(0) = 1.$

Extending the solution



Demo



• Formalized a constructive version of the Cauchy-Kovalevskiya theorem in Rocq.

- Formalized a constructive version of the Cauchy-Kovalevskiya theorem in Rocq.
- $\bullet\,$ Allows to compute interval trajectories inside the proof assistant.

- Formalized a constructive version of the Cauchy-Kovalevskiya theorem in Rocq.
- Allows to compute interval trajectories inside the proof assistant.
- Currently only very crude error bounds, sharpening would improve efficiency.

- Formalized a constructive version of the Cauchy-Kovalevskiya theorem in Rocq.
- Allows to compute interval trajectories inside the proof assistant.
- Currently only very crude error bounds, sharpening would improve efficiency.
- In general, optimizing computation inside the Rocq proof assistant is challenging.

Thank you!

